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“Everyone should learn how to create a neural network, because it teaches you how you think.”  

~ Matthijs Ates 
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1. Abstract 

Voice recognition is a new and mostly unexplored area of Artificial Intelligence. Voices are 

unique and very complex information that, if integrated properly, could be used for speaker 

identification. Current programs seem to be lacking in their accuracy, often approving strangers 

or disapproving the real calibrator. This paper dives into the recognition of unique voices using 

the Fourier Transformation, a technique to differentiate voices by frequency. Predicting the 

speakers has been achieved by using a Deep Neural Network. Consequently, a Smart and 

Effective Neural Network for Sensing and Ordering Recorded Sounds was created. A program 

that is able to classify speakers based on a three second audio input with over 99% accuracy for 

two speakers.  
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2. Preface 

Choosing the topic of Artificial Intelligence was not a hard decision to make. Early 2018, 

conversations we had created a big fascination for what Artificial Intelligence does now and 

what it could be able to do in the future. This, in addition to the thought experiment of Roko’s 

basilisk, the idea that a future all powerful AI will punish those who did not contribute to its 

existence, led to an easy decision of the topic. However, Artificial Intelligence is a huge topic, so 

making a decision on what exactly to research within the field was not as easy. Weeks of brain 

storming went by and suggestions like the recognition of handwritten digits or solving a Rubik's 

cube were in the back of our minds. These ideas just seemed to be quite standard and our 

excitement seemed to drain away thinking about researching something that had been done 

hundreds of times before. Was it really research if everything we needed could be copied and 

pasted directly from the internet?  

Suddenly an idea popped into our heads: speaker recognition. We found out it was the less 

popular sibling of speech recognition. A couple searches on Google confirmed our expectation 

that there had not been conducted a lot of research on this subject, which was exactly what we 

wanted. Aside from the fact that a quote from Albert Einstein “If we knew what it was we were 

doing, it would not be called research, would it?” became very relatable, the idea that we 

actually did research on Artificial Intelligence made us enthusiastic. In the end, we are superb 

with the results, especially because something that seems so inaccessible and advanced as 

Artificial Intelligence turns out to be quite doable for two teenagers in high school. 

Furthermore, the research would not have been possible if it was not for the people 

surrounding us. Special thanks to Rachel for being our supervisor, Sjoerd Offerhaus for directing 

us towards the Fourier Transformation, Henriet for recording extra test data and our families 

for the support.   
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3. Introduction 

Often, people with little knowledge of artificial intelligence (AI) get the idea that it will take over 

the world in the future. We’re not going to argue with that, but before it happens, a couple 

decades will probably go by. In the meantime, we want to help AI evolve into something for a 

good cause and although this might be a little contribution for the whole industry, there is a 

chance we set somebody else or ourselves up to create big projects in the future.  

As you may have realized, our research topic is artificial intelligence or more specifically 

machine learning. Machine Learning is a subtopic of AI that focuses on making machines ‘learn’, 

but it could basically be seen as mathematically improving the outcome. If we go even more 

specific our research topic is voice recognition or speaker recognition. These terms sometimes 

get confused with speech recognition. They mean, respectively, the identification or verification 

of a voice and the recognition of spoken words. We will use ‘speaker recognition’ or ‘voice 

recognition’ throughout this paper to be clear in what we want to say. Remarkably, speech 

recognition is already widely used and researched in voice assistants and other fields. This in 

contrast to speaker recognition, which has not been researched a lot and is also used less in, 

again, voice assistants.  

With personalization among devices and products becoming more important, speaker 

recognition is a feature that fits perfectly in the picture of optimized user experience. The 

technology could be perfectly used in voice assistants such as Siri and Alexa. With this research 

we hope to bring this technology one step closer to the public. 
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4. Thesis 

Creating a scientific paper out of nowhere is not an easy task. Especially in this period of time 

where the research on Artificial Intelligence is huge. Most research for starters has already 

been done before like the recognition of handwritten digits. Finding an original topic can be 

hard but persistence wins. After the general topic of Speaker Identification had been formed, it 

was not so hard to create a thesis which was in compliance with research in similar fields: Is it 

possible to create a deep neural network that can recognize a voice with an accuracy above 

90 percent? 

 

4.1 Partial questions 
From this thesis question a few partial questions can be formulated as well.  

1. Will the accuracy of the predictions remain the same when a third speaker is added? 

2. How does a decreased number of neurons affect the accuracy of the predictions?             

 

4.2 Hypothesis 
The hypothesis we have formulated for this question is as follows: The neural network should 

be able to achieve an accuracy of 90% in recognizing known speakers. 
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5. Artificial Intelligence 

In this chapter we will look at artificial intelligence. We will explain what AI is, how it learns and 

go deeper into the techniques we used for our research. In addition, there is a section on the 

programming language Python, where we explain the basics of how the programming language 

works as well as the reasons behind the usage of this specific language for our research. 

 

5.1 Artificial Intelligence in general 

An app that can compute the fastest route to your destination, a smartphone that can listen 

and interpret to what you say, a program that can predict what series you like most, software 

that can correct spelling mistakes, a site that translates any sentence from any language, to any 

language.  The last century computers have gone from large rudimentary calculators to tiny 

processors doing billions of computations every second1.  A smartphone today has more 

computing power than all of NASA had when they performed the Moon landing in 19692. 

Computers are becoming better, faster and smarter every year, but what does it mean to have 

a smart computer? 

The first paragraph provides a couple examples of artificial intelligence, or AI in short. We use 

AI in our day to day lives even without noticing. Every time we use an online translation 

program, voice assistant or online marketplace, there is AI working in the background.  

So, what exactly is Artificial Intelligence? Is the computer becoming self-conscious? How does it 

work? AI is becoming widely used, the technology companies are just a small part of where it is 

applicable. Not only the use, but also the jobs related to AI increase every day. According to the 

Merriam-Webster3 dictionary, AI is defined as “a branch of computer science dealing with the 

simulation of intelligent behavior in computers” and “the capability of a machine to imitate 

intelligent human behavior”. This is a very broad definition of Artificial Intelligence, for the 

subject of AI itself is very broad in what it can do and how it functions. We will dive deeper into 

the definition of artificial intelligence in the next section.  

In general, AI can be useful for tasks that normally require a human because simply 

programming an algorithm is hard for tasks related to human senses. Nevertheless, AI can also 

                                                      
1 Ullah, Z. (2012). Early Computer VS Modern Computer: A Comparitive Study and an Approach to Advance 
Computer. Retrieved on 4 november 2018, from 
http://www.academia.edu/29957529/Early_Computer_VS_Modern_Computer_A_Comparitive_Study_and_an_Ap
proach_to_Advance_Computer 
2 Kaku, M. (2011, 15 march). Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by 
the Year 2100. Retrieved on 4 november 2018, from https://www.goodreads.com/work/quotes/13358451-
physics-of-the-future-how-science-will-shape-human-destiny-and-our-dail 
3 Merriam-Webster. (n.d.). Definition of Artificial Intelligence. Retrieved on 7 december 2018, from 
https://www.merriam-webster.com/dictionary/artificial%20intelligence 
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be quite useful for tasks with a lot of data. The more difficult the task, the more complex the AI. 

Netflix uses AI to predict what movies you are likely to watch in order to fill your recommended 

feed. The software behind this uses a lot of data from other users and yourself to compile your 

personalized feed. It then presents the movies it thinks you will like most or that are closely 

related to something you most recently watched. 

AI uses previously gained knowledge to (accurately) predict the outcome, meaning the AI 

Netflix uses can, in a way, ‘learn’ about the person watching. When an AI is able to make 

decisions based on data it has been given, or that it has gathered itself, it is called machine 

learning4. 

 

5.2 Machine Learning 

Machine Learning (ML) is not the same as AI. It is specifically about the ‘learning part’ of AI, the 

improvement of systems in doing their designated task. Machine Learning is not the same as 

human learning. Humans can learn new skills and improve the skills they already have, whereas 

Machine Learning, as of now, can only learn how to do a single task, dependent on the input 

data it has been given. Machine learning focuses on creating predictions based on data and 

improving itself with experience. But how does a program do this? 

There are many different types of AI, all of which are structured differently and are used to 

perform different tasks. Consequently, there are as many, if not more, kinds of machine 

learning. The broadest distinction that can be made between these types is to classify them as 

either supervised or unsupervised learning. 

These two ‘classes’ of AI learning are distinct in one main part. Supervised learning requires the 

input to be labeled or classified by a human first, so that the AI knows whether or not its output 

is correct5.  Unsupervised learning is its exact opposite. Unsupervised learning algorithms work 

with data that has not been labeled beforehand. Instead these types of machine learning are 

programmed to look for patterns in data and work by way of categorizing, or ‘clustering’ 

datasets6. 

                                                      
4 Fagella, D. (2018, 29 october). What is Machine Learning? Retrieved on 8 november 2018, from 
https://www.techemergence.com/what-is-machine-learning/ 
5 Brownlee, J. (2016, 22 september). Supervised and Unsupervised Machine Learning Algorithms. Retrieved on 8 
november 2018, from https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-
algorithms/ 
6 Maini, V. (2018, 16 august). Machine Learning for Humans, Part 3: Unsupervised Learning. Retrieved on 8 
november 2018, from https://medium.com/machine-learning-for-humans/unsupervised-learning-f45587588294 
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Despite their differences, all machine learning systems work by way of three main components, 

as stated by the Department of Computer Science and Engineering of the University of 

Washington7. These three components are representation, evaluation and optimization.  

In short, representation is the part of AI that takes the input and computes the output. 

evaluation, or the evaluation function, is the function in the algorithm that discerns the bad 

outputs from the good outputs. Lastly, optimization is the component that optimizes, or 

‘improves’, the AI in order to get better results the next time8. 

Each of these three components can be filled in by a number of different functions and 

algorithms. For each task different options can be used, yet not every option is sensible to use 

in a given situation. For example, a logic program can be very useful for a food distribution 

system, however, this may not prove very effective in profiling customers at a supermarket, in 

which case a neural network can be of better use. 

Which type of AI and which type of learning mechanism is used is dependent on the task the 

program has to perform. It is important to define for yourself what the problem is and what 

type of program can solve it, thereby filling in the three components (representation, 

evaluation, optimization) in the best way to solve said problem9. 

 

5.3 Machine learning related to our problem  
Speaker recognition is a new and as of yet rather unexplored area of research. Voices are 

complex and to make a program that is able to recognize and classify voices is therefore no 

easy task. The data we use as input is large yet shows clear signs of distinction between 

individuals. Our program has a few requirements to meet, including the abilities to: 

 Differentiate between voices 

 Improve itself to differentiate more effectively 

 Classify new audio samples from known speakers correctly 

Consequently this program has to be able to find patterns in the input. This indicates that an 

unsupervised learning algorithm has to be used. However, the program also needs to know 

how many classes are possible, and in which class to place new input. Thus, we also must label 

the input in order to contain the number of classes, meaning that we will use a type of AI able 

to recognize data structures but has supervised learning algorithms in place to achieve this. 

                                                      
7 Domingos, P. (2012, 1 october). A Few Useful Things to Know about Machine Learning [Scholarly article]. 
Retrieved on 8 november 2018, from https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf 
8 Domingos, P. (2012, 1 october). A Few Useful Things to Know about Machine Learning [Scholarly article]. 
Retrieved on 8 november 2018, from https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf 
9 Domingos, P. (2012, 1 october). A Few Useful Things to Know about Machine Learning [Scholarly article]. 
Retrieved on 8 november 2018, from https://homes.cs.washington.edu/~pedrod/papers/cacm12 
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Given our problem we have decided to use a structure called a neural net. This is because it has 

“a remarkable ability to derive meaning from complicated or imprecise data”10. As our data is 

indeed complicated and, at times, can be rather imprecise (or overlapping) a neural network 

sounds like the ideal solution to our problem. We have therefore decided to make use of (deep) 

neural networks to classify voices. How neural networks function will be explained in the next 

section. 

 

5.4 Neural networks 
A neural net is a design of artificial intelligence that is based on the human brain. The human 

brain is something scientists have been studying since the sixteenth century11 and research in 

the exact workings of the mind is still going on. Brains can be viewed as incredibly potent 

computers. Computer scientists have recognized this as well and have tried to replicate its 

architecture as a form of AI, creating the first artificial neural networks. But to understand how 

an artificial neural net functions, we need to know the workings of what it was all derived from. 

The human brain functions by way of an incredibly vast network of long cells, called neurons. 

Neurons consist of two main parts: the cell body, or soma, and the extension, or axon12. The 

exons of these neurons are connected to the somas of other neurons, forming a large network 

which is called the nervous system. Neurons are able to influence each other by way of 

neurotransmitter which can either be enticing or prohibiting the other neuron to ’fire’13. 

 

Figure 1: A biological neuron 

                                                      
10 Imperial College London. (n.d.). Neural Networks. Retrieved on 11 november 2018, from 
https://www.doc.ic.ac.uk/%7End/surprise_96/journal/vol4/cs11/report.html 
11 Wikipedia contributors. (2018, 11 november). History of neurology and neurosurgery - Wikipedia. Retrieved on 
11 november 2018, from https://en.wikipedia.org/wiki/History_of_neurology_and_neurosurgery 
12 Bijterbosch, J., & from Wijk, P. (2015). Nectar 3e editie biologie 5 VWO leerboek (3e ed.). Groningen/Houten, the 
Netherlands: Noordhoff. 
13 Bijterbosch, J., & from Wijk, P. (2015). Nectar 3e editie biologie 5 VWO leerboek (3e ed.). Groningen/Houten, 
Netherlands: Noordhoff. 
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An artificial neuron functions in much the same way. It is able to get many inputs and compute 

those to a single output which it sends forward to the next neurons. More complicated artificial 

neurons first have their input computed by a specific value, or ‘weight’14. This weight influences 

the impact every specific input has on the neuron. This weight can be any value which 

represents the importance of a certain input. The neuron can also have a bias. This is a 

threshold which can prevent a neuron from firing if the input is not above a certain level. 

 

Figure 2: An artificial neuron 

When combined these factors can form a mathematical equation. Below is the function for a 

neuron with a single input, which is computed by a weight and restrained by a bias. 

O(neuron)= W1 ∙ X1 - b 

In which O(neuron) is the output of the neuron, W1 the weight of input X1 and b the bias. 

Neurons which have an amount of inputs n have a similar, though larger, function. 

O(neuron) = W1 ∙ X1 + W2 ∙ X2 + … + Wn ∙ Xn – b 

 

 

 

 

 

 

                                                      
14 Imperial College London. (n.d.). Neural Networks. Retrieved on 12 november 2018, from 
https://www.doc.ic.ac.uk/%7End/surprise_96/journal/vol4/cs11/report.html 
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 Activation functions 

The value of O(neuron) is linear. If we increase X1 by 

a certain amount the output would react to this 

in a linear way. Consequently, the neuron can 

only represent linear data15. In order to make 

the neuron non-linear we use something called 

an activation function. The output of a neuron 

can be seen as a single, non-parabolic function, y 

= ax + b. Different activation functions exist, 

each doing a different type of computation with 

the same idea, to make the output non-linear. 

Take for example the sigmoid function. Sigmoid 

converts a function in such a way that all y-

values are ‘squished’ between 0 and 1, resulting in a graph like the one in figure 3. 

As can be seen all possible outputs have converted onto a non-linear function, with limits x--> 

∞ at y = 1 and x--> -∞ at y = 0. This function is very useful for probabilities, as it gives a 

certainty between 0 and 1. 

A different version of the sigmoid exists, called the tanh function. This function is similar to 

sigmoid, but instead it has a range of –1 to 1. The advantage of using tanh over sigmoid is that 

outputs can have negative, or ‘prohibitive’, properties (biological nervous systems have these 

properties as well16). 

 

Figure 4: A tanh graph 

                                                      
15 Walia, A. (2018, 24 august). Activation functions and it’s types-Which is better? Retrieved on 5 december 2018, 
from https://towardsdatascience.com/activation-functions-and-its-types-which-is-better- 
a9a5310cc8f?gi=2dde68909f4dhttps://towardsdatascience.com/activation-functions-and-its-types-which-is-
better-a9a5310cc8f 
16 Bijterbosch, J., & from Wijk, P. (2015). Nectar 3e editie biologie 5 VWO leerboek (3e ed.). Groningen/Houten, 
Netherlands: Noordhoff. 

Figure 3: A sigmoid graph 
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However, most deep learning programs today use 

the Rectified Linear Unit, or ReLU, activation 

function. This function makes every negative value 

equal to zero and keeps all positive values 

proportional to their original value, resulting in a 

broken function like the one shown in figure 5. 

 

The ReLU function has a slight problem. As all 

negative values are set to zero, some neurons in 

the network will be ‘turned off’ when training. 

This decreases the ‘capacity’ of the network, as 

not all of its potential is used17. To counteract this 

phenomenon an even newer function has been 

designed, the softplus function. This function is 

similar to the ReLU function, with a single difference. 

Instead of making all negative values zero, the 

softplus function has a small margin left of the y-

axis. The difference is shown in figure 6. 

The ReLU and the softplus functions are the most 

popular activation functions at this time18. This does 

not mean that the sigmoid and tanh functions are 

completely neglected. Both functions are great for 

calculating probabilities. Sigmoid gives a value 

between 0 and 1 for a single neuron.  

In neural networks (which will be explained at a 

further stage in this paper) there can be multiple 

possible outputs. The sigmoid function is ideal for a 

classifier, as it gives a probability of likelihood. There 

is one slight problem with using sigmoid when 

having multiple outputs. The sigmoid function does not take into account the outputs of other 

neurons. Thus it could be possible that multiple classes are given a very high probability. The 

                                                      
17 Walia, A. (2018, 24 august). Activation functions and it’s types-Which is better? Retrieved on 5 december 2018, 
from https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-
a9a5310cc8f?gi=2dde68909f4dhttps://towardsdatascience.com/activation-functions-and-its-types-which-is-
better-a9a5310cc8f 
18 Sharma, A. (2018, 21 june). Understanding Activation Functions in Neural Networks. Retrieved on 5 december 
2018, from https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-
networks-9491262884e0 

Figure 5: A ReLU graph 

Figure 6: A softplus graph and a ReLU graph 
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softmax function has been created to counteract this. This activation function is the same as 

the sigmoid function, with the difference that all outputs must add up to one, thereby 

cancelling out the possibility for multiple highly positive outputs19. 

Regardless of the differences between activation functions, the final function for the output of 

a neuron will always look the same. By placing the activation in our previously created neuron 

we are left with our final function. 

O(neuron) = Activation(W1 * X1 + W2 * X2 + … + Wn * Xn – b) 

 

 Learning 

Weights and biases cannot just have any given value. In order to correctly represent data these 

variables need to have specific values. Defining the optimal set of weights and biases for a 

neuron is how the neuron ‘learns’. 

A neuron starts with a random set of weights and biases. The input is then run through the 

neuron, which computes an output (this process is known as forward propagation20). This 

output is then compared to what the actual result ought to be. This is the so called ‘loss’ of the 

function (notice that this is characteristic of supervised learning). As the cost is the difference of 

the neuron’s output and the actual value, we want this to be zero. The output is defined by the 

weights and biases (given a constant input), thus these will have to be adjusted according to the 

loss. Next, the loss is run back through the network, where the loss is divided over the neurons 

according to their influence in the output, an input which has a very large effect on the neuron 

will get appropriately more adjusted. This process is called backpropagation21. 

In order to compute how much each weight and bias should be adjusted the mathematical 

principle called gradient descent is used. The loss, or ‘cost’, a neuron gives can be viewed as a 

function, in which the input is the variable22. For each value of the input, the loss of the neuron 

has a specific value, which we want to be zero. As the input can only be directly influenced by 

changing its weight, the weight is the value that will be adjusted for optimal results. In order to 

find out in which way the weight has to be adjusted, the derivative of the function is computed. 

In a two-dimensional function this derivative can be either positive or negative. When the slope 

                                                      
19 Multi-Class Neural Networks: Softmax  |  Machine Learning Crash Course  |  Google Developers. (2018, 1 
october). Retrieved on 5 december 2018, from https://developers.google.com/machine-learning/crash-
course/multi-class-neural-networks/softmax 
20  Torres, J. (2018, 26 september). How Do Artificial Neural Networks Learn? Retrieved on 12 november 2018, 
from https://towardsdatascience.com/how-do-artificial-neural-networks-learn-773e46399fc7?gi=8b0f53201f9 
21 Torres, J. (2018, 26 september). How Do Artificial Neural Networks Learn? Retrieved on 12 november 2018, from 
https://towardsdatascience.com/how-do-artificial-neural-networks-learn-773e46399fc7?gi=8b0f53201f9 
22 Google. (2018, 1 october). Reducing Loss: Gradient Descent  |  Machine Learning Crash Course  |  Google 
Developers. Retrieved on 12 november 2018, from https://developers.google.com/machine-learning/crash-
course/reducing-loss/gradient-descent 
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of the function is negative, it means the minimum will be to its right, consequently the weight 

will be increased and vice versa. 

The weight is then adjusted by a small step (called the learning rate) towards the direction of 

this ‘local minimum’. Note: this local minimum is not necessarily the lowest cost, rather the 

nearest low point in the function, therefore with each new set of random weights and biases a 

new local minimum can be reached, yielding new results23. 

 

 Gradient descent 

The same principle is used when dealing with 

multiple inputs. In the case of a multi-

dimensional cost function (which, depending on 

the size of the network, can range in the 

thousands) the derivative is not ‘negative’ or 

‘positive’. Rather, movement in each dimension 

will have its own value. (A two dimensional 

function has a direction value ‘left’ or right’, 

whereas a three dimensional function will have 

a direction value of ‘North’ or ‘South’ and ‘East’ 

or ‘West’, each in different amounts. This is 

further clarified by the images below) The 

gradient of a multi-dimensional function is the 

way of steepest ascent. Thus, taking the 

negative of this will give the way of steepest 

descent. Following the negative gradient and calculating the new derivative after each step 

eventually the loss will reach a local minimum in much the same way as a two-dimensional 

function24. 

The figures 7 and 8 illustrate the difference between the gradient of a two dimensional function 

(X and Y) and a three dimensional function (X, Y and Z). 

In order to keep the adjusting from ‘overshooting’ the local minimum (having the adjustment 

too large and ending up on the ‘other side’ of the local minimum) the learning rate, the amount 

by which the adjustment is made, can be changed according to the gradient itself. A steep 

                                                      
23 Google. (2018, 1 october). Reducing Loss: Learning Rate  |  Machine Learning Crash Course  |  Google 
Developers. Retrieved on 12 november 2018, from https://developers.google.com/machine-learning/crash-
course/reducing-loss/learning-rate 
24 3Blue1Brown. (2017, 16 october). Gradient descent, how neural networks learn | Deep learning, chapter 2 
[Video]. Retrieved on 12 november 2018, from https://www.youtube.com/watch?v=IHZwWFHWa-w 

Figure 7: The gradient of a two-dimensional function 
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gradient will have a high learning rate, whereas 

a gentle slope will have a small learning rate25. 

This means the closer you are to the minimum, 

the smaller the step that will be taken in order 

to prevent overshooting. 

Mathematically a simple version of this can be 

represented by the following function. 

An+1 = An - α ∙ (J(A)
') 

In which An is the old position, An+1 the new 

position, α the learning rate and J’(A) the 

derivative of the cost function. 

This algorithm is repeated until the learning does not progress any further. This happens when 

either the local minimum or the limit of the learning rate has been reached. This limit can be set 

in place in order to prevent the algorithm from forever taking ever smaller steps towards the 

minimum without ever reaching it, resulting in an infinite loop. 

When the learning has been completed, the weights and biases have been arranged in what the 

computer has derived to be the best set of values to correctly perform the designated task. This 

occurrence is called ‘convergence’26. This minimum will be different every time the network is 

reconfigured (the weights and biases have been reinitiated and derived). Therefore, the final 

score the program will achieves will differ every time. 

 

 Networks 

When a program has multiple inputs, converging all the inputs into a single neuron which 

computes one output is not very effective.  Why not have the outcome depend on multiple 

neurons, which then compute an output? In other words, why not create a network of neurons 

in order to better represent large data? This is the principle used when creating neural 

networks. 

A neural network is again inspired by the human brain. In an artificial neural network, or ANN, 

many neurons are interconnected in different layers in order to compute outputs. ANN’s are 

                                                      
25 Google. (2018, 1 october). Reducing Loss: Learning Rate  |  Machine Learning Crash Course  |  Google 
Developers. Retrieved on 12 november 2018, from https://developers.google.com/machine-learning/crash-
course/reducing-loss/learning-rate 
26 Baras, J., & LaVigna, A. (1990, december). Convergence of a neural network classifier. Retrieved on 9 december 
2018, from 
https://pdfs.semanticscholar.org/b263/9046c7d99e99119a2569fe58cedd75b000d6.pdf?_ga=2.7215792.38168314
.1544376574-1239280478.1544376574 

Figure 8: The gradient of a three-dimensional function 
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structured in three layers. The input, hidden and output layers. The input layer contains a 

certain number of neurons (this amount has been specified as what humans think to be the 

best for their input). Each of these neurons gets a single input. This input is then forwarded to 

the next layer, where a single neuron of the first layer sends a weighted sum of its output to 

each neuron of the second layer.  

For example, when having 100 

input neurons and 200 neurons in 

the hidden layer, an input neuron 

will send its output towards all 

200 neurons in the hidden layer, 

each with a different weight. 

Thus, a neuron in the hidden layer 

will receive 100 different inputs, 

with which it computes an output. 

After this, each neuron in the 

hidden layer will forward its 

output towards each of the 

output neurons, each connection 

again having a different weight. The output neurons will then represent the output according to 

the predictions of the neural net. 

Perhaps the text above is difficult to understand. In order to get a better idea of how a neural 

network is structured, the architecture has been visualized below. 

However, some data will require even more layers of neurons in order to be able to compute 

accurate results. If this is the case, more hidden layers can be added to the network. The first 

hidden layer will then forward its weighted output to the next hidden layer et cetera. These 

types of networks are called Deep Neural Networks, or DNN’s. (The definition on Wikipedia is as 

follows: “A deep neural network (DNN) is an artificial neural network (ANN) with multiple layers 

between the input and output layers.”)27. These architectures follow the same principle as 

ANN’s with one hidden layer. For better understanding there is, again, a picture below to 

visualize how DNN’s are structured.  

These deep neural networks can become very large when dealing with large or complex data. 

Consequently, training these nets will become progressively more difficult, as there will be 

hundreds or even thousands of weights and biases. Every single one of these values will be 

tweaked when training. A larger network will take more iterations to effectively train, as there 

are more connections to be tweaked. In addition to this, the gradient will become harder to 

                                                      
27 Wikipedia contributors. (2018, 15 november). Deep learning - Wikipedia. Retrieved on 16 november 2018, from 
https://en.wikipedia.org/wiki/Deep_learning 

Figure 9: A neural network with one hidden layer 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiJ3MvNp-DeAhWDb1AKHYJdBYIQjRx6BAgBEAU&url=https://hackernoon.com/artificial-neural-network-a843ff870338&psig=AOvVaw1N8RrpbIhJsnLlYi9qOZb1&ust=1542711836729428
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compute the more inputs are added, as 

the gradient will be in more dimensions. 

Large neural networks therefore become 

computationally expensive to train. 

Solutions to this are presented by way of 

batch-oriented gradient descent. The 

gradient descent that has been discussed 

op to this point is called ‘stochastic 

gradient descent’28. This algorithm 

computes the gradient every time an 

input has been run through the network. 

However, a less computationally heavy 

algorithm exists, ’batch gradient descent’. 

This algorithm first runs all the training data through the network and then computes the 

gradient, taking into consideration the outputs of every input29. This is called an epoch. 

Effectively training a network will take multiple epochs. A downside of this is that all outputs 

will have to be stored on local memory before the gradient is computed in addition to taking a 

long time to compute the gradient over many outputs30. 

Training a deep neural network comes with additional difficulties. Besides the increase in 

training time there is a problem that can impact the quality of the network as a whole. As all 

neurons are interconnected between layers, neurons naturally become dependent on the input 

given to them by the neurons of the previous layer. As the weights of the connections change, a 

neuron can become more or less dependent on different neurons in the previous layer. During 

training a problem known as overfitting can arise. Overfitting is a phenomenon that occurs 

when the input of a neuron becomes largely determined by a single input31. This will result in 

the network becoming too specialized on the training data, meaning it will be less able to derive 

meaning from new data. 

                                                      
28 Stanford University. (n.d.). Unsupervised Feature Learning and Deep Learning Tutorial. Retrieved on 16 
november 2018, from 
http://deeplearning.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/ 
29 Brownlee, J. (2018, 27 april). A Gentle Introduction to Mini-Batch Gradient Descent and How to Configure Batch 
Size. Retrieved on 16 november 2018, from https://machinelearningmastery.com/gentle-introduction-mini-batch-
gradient-descent-configure-batch-size/ 
30 Stanford University. (n.d.). Unsupervised Feature Learning and Deep Learning Tutorial. Retrieved on 16 
november 2018, from 
http://deeplearning.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/ 
31 Improve Shallow Neural Network Generalization and Avoid Overfitting - MATLAB & Simulink. (n.d.). Retrieved on 
5 december 2018, from https://www.mathworks.com/help/deeplearning/ug/improve-neural-network-
generalization-and-avoid-overfitting.html;jsessionid=fbb36bbaaea534e816b5b7bd4b93 

Figure 10: A neural network with two hidden layers. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi14aH3p-DeAhXJIlAKHZfLCZgQjRx6BAgBEAU&url=https://towardsdatascience.com/machine-learning-fundamentals-ii-neural-networks-f1e7b2cb3eef&psig=AOvVaw1N8RrpbIhJsnLlYi9qOZb1&ust=1542711836729428
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To prevent a network from overfitting the dropout function has been designed. Dropout is only 

active during training, in which it ‘turns off’ randomly selected neurons during the forward 

propagation. These neurons will consequently have no part in computing the output and thus 

will not be affected during backpropagation32. This allows the network to strengthen other 

neural connections thereby preventing, or greatly reducing, overfitting. 

 

 Size and Shape 

When a network becomes larger, it is inevitable the training time increases. Therefore, it is not 

necessarily ‘better’ to make an excessively large network that will very accurately present 

output when configured, yet taking ages to train correctly, if at all. It is imperative to find a 

balance between the size of the network and the training time while still being able to compute 

accurate results. The number of layers in the network and the number of neurons in each layer 

need to be carefully chosen when creating a network. 

For example, a picture of 8x8 (64 pixels) will require 64 input neurons to represent the input 

whereas large data structures may take hundreds of inputs. If the output is a simple yes or no 

(binary) answer, or a percentage, a single output neuron will suffice, whereas a classification 

system requires an output neuron for each possible class. In short, the number of neurons 

should be large enough to properly represent the data, yet not so small that the data is 

‘overgeneralized’. 

Similarly, the number of neurons in the hidden layers, and the number of hidden layers itself 

ought to be chosen carefully. Simply adding more layers and neurons will not improve the 

network. Training time will increase and accuracy will not necessarily increase. A more complex 

network will require more training data33. More neurons may therefore lead to a less effective 

network. Finding the optimal number of layers and neurons is of paramount importance to a 

network. This optimum will differ depending on the type of problem, the number of classes, the 

size of the dataset and the size of the data itself. Tweaking the number of neurons and 

reviewing the effect it has on accuracy and training time is the only way to find this optimum. 

 

 

                                                      
32 Brownlee, J. (2017, 30 march). Dropout Regularization in Deep Learning Models With Keras. Retrieved on 5 
december 2018, from https://machinelearningmastery.com/dropout-regularization-deep-learning-models-Keras/ 
33 Shivkumar, A. (2015, 29 october). Why would adding more neurons per hidden layer in a neural network hinder 
convergence within the actual training set? [Forumpost]. Retrieved on 7 december 2018, from 
https://www.quora.com/Why-would-adding-more-neurons-per-hidden-layer-in-a-neural-network-hinder-
convergence-within-the-actual-training-set 
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5.5 Python 

Now that that the basic theory of neural networks has been explained, the question remains: 

how to program them? We have done that using Python, a computer programming language 

designed to be easy to read and simple to implement. Although readability and ease of use are 

important in order to be able to focus more on the research than on the code, the biggest 

reason that we chose Python for our research is because it is already widely used throughout 

the field of Machine Learning34. Consequently, there are a lot of open-source libraries that can 

be used for creating Neural Networks such as TensorFlow, Pytorch and Theano. A library in 

computer programming is basically a piece of code which is written by somebody in order to 

make another task easier or make it require less work. If someone wanted to hang a painting on 

the wall, a hammer could be used to put the nail in the wall. A library is essentially a tool made 

by somebody in order to accomplish a task.  

In order to understand the code that will be written for the voice recognition program, basic 

python functionality will be explained. A basic understanding of math will be very useful. 

The most basic functionality of Python, and most programming languages, is the ability to store 

variables. A variable is like x in math, a name which can store a value. To create a variable in 

python, all that has to be done is: 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑁𝑎𝑚𝑒 = 𝑣𝑎𝑙𝑢𝑒 

The variable name has to be valid. In order to be valid, the name has to be a consecutive row of 

characters. In order to use several words as a variable name, camel-case is used. It means the 

first character of every word after the first is capitalized. That way it is easier to remember the 

variable name and clearer what the variable actually is. The value of the variable has to be a 

certain type. It can be an Integer (number), String (text) or Boolean (true or false). These are 

not the only variable types, however, to stay concise, the basics are enough. 

What does have to be addressed is an array. An array can be declared by: 

𝑎𝑟𝑟𝑎𝑦𝑁𝑎𝑚𝑒 = [𝑣𝑎𝑙𝑢𝑒1, 𝑣𝑎𝑙𝑢𝑒2, 𝑣𝑎𝑙𝑢𝑒3] 

An array is a list of values. Each value within an array can be accessed individually and arrays 

are mostly used to store values which have some sort of relation to each other. 

Next, functions are a very important feature of every programming language. Just like in math, 

functions can have one or multiple inputs and they can return an output. Functions are defined 

by: 

                                                      
34 Voskoglou, C. (2017, May 5). What is the best programming language for Machine Learning? 
Retrieved on January 17, 2019, from https://towardsdatascience.com/what-is-the-best-
programming-language-for-machine-learning-a745c156d6b7?gi=80bad449c44d 
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𝑑𝑒𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒(𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡): 

The ‘def’ at the beginning is a keyword. Keywords in Python are used to let the programming 

language know that a certain feature is going to be used. Here it is to define a function. The 

arguments that are given with the function when it is called can be used within the function. 

Variables that are declared in a function cannot be used outside of that function, they will 

disappear after a function has returned or stopped. The syntax for calling a function is not much 

different than the way it is declared, it is quite self-explanatory: 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒(𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡) 

Last but not least, a library can be needed when programming in Python. Using a library 

requires it to be downloaded and declared within the file of code like this: 

𝑖𝑚𝑝𝑜𝑟𝑡 𝑙𝑖𝑏𝑟𝑎𝑟𝑦𝑁𝑎𝑚𝑒 

In this case, ‘import’ is the keyword to indicate that a library needs to be imported. A library can 

also be renamed within the code using the keyword ‘as’ and the new name directly after the 

library name. It is also possible to import only certain functions from the library: 

𝑓𝑟𝑜𝑚 𝑙𝑖𝑏𝑟𝑎𝑟𝑦𝑁𝑎𝑚𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒 

Apart from the libraries to convert the audio data and perform the Fourier Transformation 

(Chapter 6), Keras will be the library used for creating the model of the Neural Network. Keras is 

a library based on TensorFlow, a library made by Google to create Deep Neural Networks using 

your own data. Keras is a framework on top of TensorFlow which makes it easier to use and it 

requires less knowledge to start creating Neural Networks. As said before, to focus on the 

research rather than figuring out the code, we chose the easier option which was Keras in this 

case.  

Even though Keras is the ‘easier’ option, it still requires decent knowledge of programming, 

Neural Networks and the different optimization and activation functions for optimizing or 

altering the Neural Network. Keras will be explained further in chapter 7.3. 
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5.6 Summary 

In conclusion, there are many different types of AI and ways these programs learn. For our 

problem we have decided to make use of Artificial Neural Networks. These computational 

architectures are based on the most advanced form of intelligence on Earth, the human brain. 

Neurons take weighted inputs, subtracts a bias and forwards the output through an activation 

function. Neurons learn by optimizing the weights and biases, which is done using the gradient 

descent algorithm, an algorithm that computes the fastest route to a local minimum, an 

optimal combination of weights and biases.  

To increase the ability of the program to handle large data structures many of these neurons 

can be arranged in a Deep Neural Network. These networks consist of an input layer, hidden 

layers and an output layer. The way this network is given form should be carefully chosen and 

thoroughly tested. The optimal structure is not always the largest, but the one that best 

encapsulates the data it takes in, the way it is computed and the output it presents. 

Finally, in order to create the actual Neural Network in a program we will be using a computer 

programming language called Python. To build the Neural Network we are going to use Keras, a 

framework based on the popular Machine Learning library TensorFlow. It is relatively easy to 

use in comparison with TensorFlow, thereby leaving us more time to focus on the research 

instead of writing code. 
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6. Voice Recognition 

In this chapter we will dive deeper in the subject of voices. We will explain what they are made 

up of, how we can use them for recognizing speakers and how we can transform the voices so 

that they can be used as input for the neural network. 

6.1 Voices in general 
The human body is capable of creating many different sounds. When a human says a word, the 

air in the lungs is let out under pressure through the vocal cords. These bits of tissue then 

vibrate due to the air pressure. This vibration is amplified in different aspects by using the 

muscles to change the tension and shape of these cords. The sound is then led through the 

mouth, where the cheeks, tongue, jaw and lips will ‘finish’ the sound produced by the vocal 

cords35. 

When using these factors in different ways, different sounds can be produced. Humans can 

combine these different sounds into words, and words into sentences. Each word has a 

definitive sound.  This sound is created by a ‘preset’ of stances in the vocal cords and mouth. 

This preset is similar in every human being. However, each person has a certain way it produces 

these sounds. This can be due to a number of reasons. The physiology is different with each 

individual and every person has these ‘presets’ configured in a different way. In other words, 

nature and nurture both affect the sound of your voice, as stated by the university of Iowa36. 

But what is a voice made up of? When a person says the letter ‘E’, the vocal cords and stance of 

the mouth produce a sound which is made up of multiple frequencies. These frequencies are 

combined into a single conjoined function, or continuous sound. Each person’s ‘E’ is unique, as 

it is made up of different frequencies37. Consequently, if these frequencies could be 

‘untangled’, each person will have a different set of frequencies, thus each person can be 

identified according to their voice pattern. 

 

 

6.2 Difficulties 
When a soundwave is recorded by a microphone, the wave hits a membrane which oscillates 

according to the sound wave. This vibration is then picked up by the microphone because an 

                                                      
35 Wikipedia contributors. (2018, 16 november). Human voice - Wikipedia. Retrieved on 16 november 2018, from 
https://en.wikipedia.org/wiki/Human_voice 
36 University of Iowa. (n.d.). Nature versus nurture of voice | voice-academy. Retrieved on 16 november 2018, 
from https://uiowa.edu/voice-academy/nature-versus-nurture-voice 
37 McLachlan, H. (2016, August 11). Is every human voice and fingerprint really unique? Retrieved on January 20, 
2019, from https://theconversation.com/is-every-human-voice-and-fingerprint-really-unique-63739?sr=1 
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attached magnet is moved nearer to, or farther from, a coil38. Consequently, the only thing a 

microphone records is the frequency over time (along with the intensity of the sound). 

The recording of a voice is thus the combination of all formants by which it is made up. As 

stated before, these formants are different for each person, thus the formants that a tone 

consists of are different. Identifying people by their voice can therefore be done by finding thee 

formants the tone is made up of. 

In mathematics the Fourier transform can be used to achieve this. When having a combined 

sinus wave, a function can become very complicated, as illustrated below. 

 

Figure 11: A graph of the function f(x) = sin(x) + sin(0.5x) 

Looking at this function, a clear symmetry can be seen, though the function itself looks random. 

In reality this function is just 𝑠𝑖𝑛(𝑥)  +  𝑠𝑖𝑛(0.5𝑥), a simple combined sinus function. 

Both sin(x) (red) and sin(0.5x) (blue) are shown below. 

 

Figure 12: The graphs of sin(x) (blue) and sin(0.5x) (red) 

The combined function is nothing more than the added values of the red and blue lines shown 

above. Sometimes these lines reinforce each other, while other times they cancel each other 

out. The Fourier transform is used to find the individual functions making up the combined 

function39. 

                                                      
38 Wikipedia contributors. (2018, 16 november). Microphone - Wikipedia. Retrieved on 17 november 2018, from 
https://en.wikipedia.org/wiki/Microphone 
39 Wikipedia contributors. (2018, 16 november). Fourier transform - Wikipedia. Retrieved on 17 november 2018, 
from https://en.wikipedia.org/wiki/Fourier_transform 
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6.3 Fourier transformation 

The Fourier transform is rather difficult to explain without getting into complex mathematics. 

To explain this problem more intuitively, imagine the function cos(x), but instead of it being 

shown in a x/y grid, it is ‘wrapped around’ a single point, for example the origin. The orbital 

period (the time it takes to go around the circle exactly once) of this circle is variable. 

The x-value of the function corresponds to the amount of rotation around the point and the y-

value is the distance between the point and the function. A visualization of this is shown below. 

 

Figure 13: The graph of the function f(x) and the same function wrapped around the origin with an orbital period of 2 (4041 

As can be seen, the orbital period of this function in this example is 2. When changing said 

period the shape of the circle graph will change drastically. 

                                                      
40 3Blue1Brown. (2018, 26 january). But what is the Fourier Transform? A visual introduction. [Video]. Retrieved on 
18 november 2018, from https://www.youtube.com/watch?v=spUNpyF58BY 
41 3Blue1Brown. (2018, 26 january). But what is the Fourier Transform? A visual introduction. [Video]. Retrieved on 
18 november 2018, from https://www.youtube.com/watch?v=spUNpyF58BY 
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The orbital period can also be expressed as a frequency. The formula for frequency is 1/T, in 

which T is the vibration time (in this case orbital period) in seconds. This example has therefore 

a frequency of ½ hertz (Hz).  

When setting the frequency to 3 Hz the circle will capture the exact vibration time of this cosine 

function, as shown in the following image42. 

 

Figure 14: The same function f(x) wrapped around the origin with an orbital period of 1/3 (43) 

Imagine this graph has a ‘mass’ assigned to it, equally distributed over the entire function. The 

center of gravity of this graph would change when the rotation time of the circle is changed. 

The center of mass of graph 1 would be somewhere around the origin. The center of gravity 

would stay around the origin for every given rotation time, except for the one above, 3 Hz. In 

this case, it sits at (1, 0). 

The x-coordinate of the center of gravity is plotted out over the winding frequency in the image 

below. 

                                                      
42 3Blue1Brown. (2018, 26 january). But what is the Fourier Transform? A visual introduction. [Video]. Retrieved on 
18 november 2018, from https://www.youtube.com/watch?v=spUNpyF58BY 
43 3Blue1Brown. (2018, 26 january). But what is the Fourier Transform? A visual introduction. [Video]. Retrieved on 
18 november 2018, from https://www.youtube.com/watch?v=spUNpyF58BY 
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Figure 15: A graph of the x-coordinate of the center of mass as a function of the frequency (44) 

Notice there is but a single peak in this graph, at x = 3, which is the same as the frequency of 

the cosin function. 

When having a combined cosin function, for example one with frequency 2 Hz and another with 

frequency 3 Hz, the center of mass will be far to the right on two occasions, one at x = 2 and 

another at  x = 3. 

However, the center of mass also is a coordinate, thus it has an associated y-value as well. With 

respect to the frequencies that make up a tone this is not relevant, however, when describing 

the Fourier transform mathematically this complex number does come into play. 

However, before explaining the Fourier transform one must understand how a function is 

‘wrapped’ around a point in general. For this, Euler’s famous formula eαi = cos(α) + i ∙ sin(α) is 

used45. 

According to Euler’s formula a circle with radius 1 in the complex plane can be described using 

the function eαi. In which α is equal to the length of the part of the circle from the beginning to 

the current location. In order to ‘wrap’ the cosin function around a circle Euler’s formula is 

used. 

The function is then e2πift. In this function, 2π describes the length of the circle and f * t 

describes the rotation, frequency multiplied by time. However, Fourier transforms are wrapped 

around the circle in a clockwise direction, thus the exponent has to be negative. Consequently 

the function will become e-2πift. 

This function describes a circle that rotates clockwise and has a radius of 1. When ‘wrapping’ a 

function around the origin, all that must be done is multiplying the function (f(t)) by the circle 

                                                      
44 3Blue1Brown. (2018, 26 january). But what is the Fourier Transform? A visual introduction. [Video]. Retrieved on 
18 november 2018, from https://www.youtube.com/watch?v=spUNpyF58BY 
45 Intuitive understanding of Euler's formula. (n.d.). Retrieved on 19 november 2018, from 
https://betterexplained.com/articles/intuitive-understanding-of-eulers-formula/ 
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function (e-2πift), giving the following function: 𝑎(𝑡)  = 𝑓(t) ∙  e−2πift, where a(x) is the wound-up 

function. 

In order to calculate which frequencies make up the function f(x), the center of mass needs to 

be tracked. This can be done by taking the integral of a(x) for every value (-∞ to ∞), resulting in 

the function ∫ ( f(t) ∙  e−2πift)dt
∞

−∞
46. 

The ‘real’ component of this function (a complex function has a real as well as an imaginary 

part) will show peaks at corresponding frequencies. Frequencies that persist in the combined 

function (f(t)) will have greater values in the output graph (the graph which displays the 

frequencies)47. 

Thus, when having a function 𝑓(𝑡)  =  𝑠𝑖𝑛(𝑡)  +  𝑠𝑖𝑛(0.5𝑡), the Fourier transform of this 

function will show two peaks, one at ½  ∙ π and another at ¼ ∙ π, which are the same 

frequencies the original signal was made up of. This is what the Fourier transform does, 

outputting the frequencies of which a signal consists. The Fourier graphs of the three speakers 

that have recorded input for the neural network are shown in the Attachments, section E. 

 

6.4 Summary 
In conclusion, the Fourier transform can be used to discern the frequencies a signal is made up 

of. The way a voice sounds is determined by both nature and nurture, leading to each person 

having a unique voice. A recording of the human voice can be transformed using the Fourier 

transform, outputting a graph that shows which frequencies make up the voice. As each 

person’s voice is unique, each person will have a unique Fourier transform output. This 

‘signature graph’ can be used as input for a neural network, which then should be able to 

differentiate between graphs, consequently differentiating people using only their voice. 

 

 

 

 

  

                                                      
46 Fourier transform for dummies. (z.d.). Geraadpleegd op 19 november 2018, van 
https://math.stackexchange.com/questions/1002/Fourier-transform-for-dummies 
47 3Blue1Brown. (2018, 26 january). But what is the Fourier Transform? A visual introduction. [Video]. Retrieved on 
18 november 2018, from https://www.youtube.com/watch?v=spUNpyF58BY 
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7. Research 

In this chapter we will go deeper in to the research we have conducted, going through the 

process step by step. We will explain the recording of the voices and how we have programmed 

the Fourier transform and neural network in python in addition to the steps we have taken to 

optimize the networks. 

 

7.1 Recording voices 

Before individuals can be recognized using their voice, it, obviously, has to be recorded. 

Naturally the recording has to be high quality as it is of paramount importance to this research. 

Aside from a high quality microphone a few rules have been set in order to generalize the way 

audio is recorded. In a way this can be seen as a protocol that has to be followed in order to 

have valid recordings for the research. 

First of all, every audio sample is recorded on the same microphone. Each microphone has a 

different design, therefore using one microphone will yield reliable results in respect to the 

quality of the recording. 

Secondly, the distance between the mouth and the microphone might influence the recording, 

thus we have standardized this as well. As a rule of thumb, the speaker has to make a pistol 

shape with his or her fingers and place the thumb on the point of the chin. The index finger 

should then exactly touch the microphone. This will create about 9 to 10 centimeters of 

distance between the mouth and the recorder. 

Thirdly, it is important there are no fluctuations in the recording. When recording, the vowel 

must be said in a single, monotone pitch. When saying ‘E’, humans start with somewhat of a 

boost. The first ½ second of saying a vowel there is some kind of emphasis. It could be possible 

this emphasis could influence the recording in unforeseen ways. To prevent this the speaker 

has to start speaking before the recording starts, about 1 to 1½ seconds prior. In addition to this 

the pitch of the recording has to be uniform for all samples, as the Fourier transform of high 

pitch samples was much unlike the lower pitched samples. 

Moreover, at the end of a sentence, humans tend to ‘lose power’, their voice dies down. As 

with the ‘boost’ before the recording, the change of pitch this phenomenon has may influence 

the results. Similarly, as the beginning is excluded from the input, the end is as well. The 

recording ends before the speaker stops speaking. 

Lastly, in order to restrain the impact of cracks and vibrations in the voice the length of the 

recording has to be limited. The longer a voice continues, the harder we found it to keep our 

pitch stable. Therefore we decided to standardize the length of the recording to three seconds. 
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The recorded voice is then edited using Audacity. Audacity is recording software which we use 

for ‘cutting’ the samples to the right length. After the voice is properly recorded and trimmed it 

is saved as a .wav file. The reason this file format has been chosen over the likes of .mp4 is 

because of the next stage in the research, which we will get to shortly. 

We set these regulations for recording training data in order to maintain a high, and uniform, 

audio quality. As our goal is to achieve over 90% accuracy on the network, good audio is 

important, for it is the basis the entire research relies on. 

 

7.2 Transforming voices 
When the audio samples have been recorded and organized, they have to be converted before 

used as input our program can use. The ‘frequency/time’ file has to become a 

‘frequency/intensity’ file, meaning the audio will have to be converted using the Fourier 

transform. 

Using python we made a program that can perform the Fourier transform on a .wav file. To 

properly explain how this has been achieved the code will be explained line by line below. Some 

variables may have ‘temp’ in their variable names. This is short for temporary and is a way to 

say that variable is temporarily used and will probably be discarded.  

import matplotlib.pyplot as plt 

import matplotlib.axes as ax 

from scipy.io import wavfile as wav 

from scipy.fftpack import fft 

from pathlib import Path 

import numpy as np 

import wave 

import sys 

import pickle 

 

This first bit of code is merely importing the different libraries and packages necessary for 

converting the audio files. The next bits of code are far more interesting. 

def convert_train_data(audioVowel): 

    global fileName1 

    global fileName2 

 

This piece of code simply puts the code into a function with ‘def’, which makes it easy for us to 

input a vowel like ‘E’ or ‘A’ and automate the process. We’re using global filenames here which 

we did so that we could enter the key variables all in one place. If, for example, we would want 

to use another file, we do not have to change code all over the place but change it in just one 

place. 
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    # Train Data 

    labelData = [] 

    inputValues = [] 

    print('Steven train data') 

    inputValues, labels = convert_train_data_from(fileName1, audioVowel, 

inputValues) 

    labelData.extend(labels) 

    print('Matthijs train data') 

    inputValues, labels = convert_train_data_from(fileName2, audioVowel, 

inputValues) 

    labelData.extend(labels) 

 

Here another function (convert_train_data_from() ) is called twice to operate on both Steven’s 

and Matthijs’ training files. This data is stored in a large list. 

 

    # Test data 

    print('Test data') 

    labelData_test = [] 

    inputValues_test = [] 

    inputValues_test, labels = convert_train_data_from(fileName1 + 'Test', 

audioVowel, inputValues_test) 

    labelData_test.extend(labels) 

 

    inputValues_test, labels = convert_train_data_from(fileName2 + 'Test', 

audioVowel, inputValues_test) 

    labelData_test.extend(labels) 

 

    return np.array(inputValues), np.array(labelData), 

np.array(inputValues_test), np.array(labelData_test) 

 

This piece of code does essentially the same as the previous one except it now calls the 

function on the test data of Steven and Matthijs. The test data is used to determine the 

accuracy of the neural net later. 

def convert_train_data_from(audioFileName, vowel, data_list): 

    global fileName2 

    x = 1 

    temp_labels = [] 

 

In the second function the actual Fourier transformation takes place. The first two parameters 

of the second function are quite self-explanatory. The third parameter is a list of variables, 

which the data that has been created with the Fourier transformation should be appended to. 

The fileName2 variable is to check which file it is creating data of; the x variable is to simplify 

transforming the data of all the audio files that are currently present instead. 
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    while True: 

 

        audiofile = '../AudioFiles/'+ str(vowel) + str(audioFileName) + 

str(x) + '.wav' 

        if Path(audiofile).is_file(): 

            spf = wave.open(audiofile,'r') 

        else:  

            break 

 

        print(x) 

The first line in this piece of code creates a while loop, this way with the next couple lines the 
code keeps doing the transformation until there are no more new audio files available. This 
does require all of the audiofiles to be named in the same way. In this case we used the format: 
[Vowel][name][number] so for instance ‘Ematthijs1’. 
The x that was declared earlier is used here so in a later piece of code it adds 1 to x, so that it 
checks every number from 1 to n until there is no file with that name anymore. Next, the if 
statement checks if the file exists, if so, it opens that audiofile. If the file does not exist, it stops 
the while loop. The ‘print x’ statement is to keep track of where the conversion currently is, 
since it takes quite some time to transform all audio files. 
 
        #Extract Raw Audio from Wav File 

        signal = spf.readframes(-1) 

        signal = np.fromstring(signal, 'Int16') 

        fs = spf.getframerate() 

 

Now the frames or “signal” from the file is read and is converted into a type of ‘Int16’, basically 

a number that has a minimum and maximum which it can store (-32,768 to +32,767). Next the 

framerate is stored in the variable fs. 

 

        # Time and fft 

        fft_out = fft(signal) 

        xvalues=np.linspace(0, len(signal)/fs, num=len(signal)) 

 

Now the Fourier transformation is performed on the signal with the function fft() which was 

imported earlier from the ‘scipy’ library. In the next line a variable xvalues is made. This variable 

is an array of numbers which if plotted, would equal the time of the recording on the x-axis. 

 

  # Get corresponding y values 

        yvalues = np.abs(fft_out) 

        framerPerSecond = int(181855 / 4) 

 
Here the yvalues is an absolute array of the Fourier transformation output. The 
‘framerPerSecond’ is a fixed number which is necessary for the next piece of code to work 
properly, it is the amount of frames that is equal to one second. 
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# Create new array for new graph of values 

        yArrayValues = [] 

        for i in range(0, int(framerPerSecond*0.14), 8): 

            idx = np.where(xvalues==xvalues[i]) 

            yArrayValues.extend(yvalues[idx]/(1* (10**7))) 

            if i >= 3996: 

                break 

 
First a list is created here. This list will represent a certain amount of the y values to make the 
input for the neural network smaller. What the for loop here does, is it goes through a range of 
numbers by steps of 8. The range (framerPerSecond*0.14) is a maximum of where y-values of 
worth could be. It makes an array of these values in yArrayValues and it also divides by a fixed 
number (10**7 which means 10^7) to make the values smaller so it’s generally easier to work 
with. The i >= 3996 makes it only get 501 values from the array. This was made so it is easily 
adjustable how many neurons we would actually want to use in the Keras code. 
 

        z=0 

        cumulativeValue = 0 

        zArrayValues = [] 

        for value in yArrayValues: 

            cumulativeValue += value 

            if z == 10: 

                zArrayValues.append(cumulativeValue/10) 

                cumulativeValue = 0 

                z = 0 

            z += 1 

 

Now this part of the code is for neural network 2, not 1. Globally, this part of the code takes the 

average of every 10 values of the yArrayValues and puts it in a new array zArrayValues. The 

reason for this is the reduced amount of neurons, which will be explained more later. 

        data_list.append(zArrayValues) 

        if audioFileName == fileName2: 

            temp_labels.append([1, 0]) 

        else: 

            temp_labels.append([0, 1]) 

        x += 1 

    return data_list, temp_labels 

 
This bit of code of the second function first adds the zArrayValues (so the neurons for one file) 
to the data_list, which is a list that consists of these lists of neurons. Next, if the current 
audiofiles are that of fileName2 (so Matthijs) an array will be appended with [1, 0]. This is a 
label for the neural network so if it is training on a particular file, it tells the neural network 
“this is Matthijs” and if it guessed that wrong, it will improve. Vice versa if it appends [0, 1]. 
Finally, the function end with a line that is less indented because it is not in the while loop. This 
will return the data if all the files have been converted. 
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fileName1 = 'steven' 

fileName2 = 'matthijs' 

 

z = 1 

storeFile = 'filename' 

while True: 

    if not Path(storeFile + str(z) + '.pckl').is_file(): 

       storeFile = storeFile + str(z) 

       break 

    z += 1 

 

f = open(storeFile + '.pckl', 'wb') 

pickle.dump(convert_train_data('E'), f) 

f.close() 

 

 

This last piece of code, outside of any function, sets the global variables (the two filenames) and 

makes a file with a .pckl extension so it’s easy to get the stored variables in another python 

program. The while loop in this piece of code is mostly to make it easy to store files. It checks if 

the current filename, from the ‘storeFile’ variable, already exists. If it does then it adds a 1 to 

the filename and checks again if it exists. This way you don’t continually have to change the file 

name if the program has to run multiple times. 

The code can also output a graph of the performed Fourier transform. Six of these graphs are 

shown in the Attachments (section E). 

 

7.3 Creating the neural net 
The conversion file transforms the audio into an array of 50 different values. This array 

represents the Fourier graph by dividing the it in 50 equal pieces, of which the average y-value 

was used as input. The values of the array are the y-averages of the function, the position in the 

array represents the number of the division along the x-axis. The array serves as the input for 

the neural network. 

Programming a neural network from scratch, meaning programming every neuron individually, 

would take an astronomical amount of time when dealing with a network of this size. Each 

neuron, the connections between neurons and their respective learning algorithms would have 

to be programmed one by one. A machine learning library called Tensorflow can be used to 

speed up the process. Using Tensorflow layers of neurons and their ‘characteristics’ such as 

optimizers, architectures and activation functions can be created with but a few lines of code. 

However, Tensorflow’s many possibilities can make it hard and confusing to use. Therefore we 

have decided to use Keras, an even higher level api build on Tensorflow that is created 

specifically for programming neural networks. Using Keras neural networks can be quickly 

created and easily modified. In addition to this the code is shorter and clearer compared to 

using Tensorflow.  
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The code below is that of the SENNSORS network itself, which is the actual neural network that 

trains and predicts on the transformed audio input. 

from keras.models import Sequential 

from keras.layers.core import Dense, Dropout, Activation 

from keras import optimizers 

import pickle 

 

from scipy.io import wavfile as wav 

from scipy.fftpack import fft 

from pathlib import Path 

import numpy as np 

import wave 

import sys 

 

The first bit of code is for importing the different libraries we will need for the program, 

including the different Keras models required for creating the network. 

def tensorModel(output_neurons, output_activation_func, loss_calculator, 

trainFile): 

    global x_train 

    global y_train 

    global x_test 

    global y_test 

    global x_individual 

    neurons = 50 

    activation_func = 'relu' 

 

The tensorModel function is the function in which we will define our neural network. It takes 4 

inputs, three of which, the variables output_neurons, output_activation_func and 

loss_calculator are in place for the sake of keeping the network flexible, as will be explained 

later. The last input, trainFile, is the most important for the network, namely the converted 

audio files. 

The first part of the function defines the variables that will be used. The second part of the 

function is far more important. 

 

    model = Sequential() 

    # Input layer 

    model.add(Dense(neurons, kernel_initializer="uniform", input_dim=neurons, 

activation=activation_func)) 

 

    # Hidden layers 

    model.add(Dense(neurons, kernel_initializer="uniform", 

activation=activation_func)) 

 

    model.add(Dense(neurons, kernel_initializer="uniform", 

activation=activation_func)) 

    model.add(Dropout(0.5)) 
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    model.add(Dense(neurons, kernel_initializer="uniform", 

activation=activation_func)) 

    model.add(Dropout(0.2)) 

 

    # Output layer 

    model.add(Dense(output_neurons, kernel_initializer="uniform", 

activation=output_activation_func)) 

    adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, 

decay=0.0, amsgrad=False) 

    model.compile(loss=loss_calculator, optimizer=adam) 

 

This bit of code is the neural network. A general overview shows a few things. First of all the 

code is very clear and easy to edit. This is due to our use of Keras. Secondly the structure of the 

network can be seen almost immediately. There is one input layer with length “neurons”, which 

has been defined as 50 (the length of the input array) in the prior bit of code. There are three 

hidden layers, all of which have length “neurons” as well and there is one output layer with 

length “output_neurons”, that will be defined when the function is called. 

The first line of code is “model = Sequential()”. This tells Keras the architecture of the network 

that will be created. There are multiple different architectures, sequential is the one that has 

been described earlier in this paper and that we have found to be the best architecture for our 

problem. 

The next few lines of code look very similar. To define a layer of neurons using Keras there is a 

‘template’ that has to be filled in. This template can be described as follows: 

𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝑙𝑎𝑦𝑒𝑟(𝑛𝑒𝑢𝑟𝑜𝑛𝑠, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑟, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)) 

The ‘layer’ variable is in our network ‘Dense’. A dense layer in Keras is a traditional, fully 

interconnected neuron. Other types of layers can be added, but we found a classical neural 

network more suited for our research.  

‘Neurons’ defines the amount of neurons in the layer, in our case it is defined as the previously 

stated variable ‘neurons’, set as 50. 

The ‘initializer’ variable defines the start values of the weights and biases. In our model it is 

‘uniform’, which makes the starting values of the weights and biases the same over the entire 

layer. 

The last variable is ‘activation function’, which speaks for itself. The input- and hidden layers 

have a ReLU activation function, as this is widely agreed to be the best choice in most situations 

regarding neural networks. However, in the output layer we use different activation functions 

depending on what input we give the network. Later in this chapter we will explain this topic 

further. 

Below the second and third hidden layers there is an additional line of code, defining a variable 

called ‘Dropout’. In the chapter 5, Artificial Intelligence the term dropout has already been 
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explained. In short, it is a means to prevent a network from overfitting neurons. The dropout 

function has a value which defines the amount of dropout in each layer. Looking at the code it 

is notable that the first layer does not have dropout, the second layer has a high (0,5) dropout 

rate and the third layer has a low (0,2) dropout rate. The reason the dropout is adjusted in this 

way is simple. During testing this configuration (along with only using three hidden layers) 

yielded the most consistent and accurate results. 

Below the output layer is a variable called ‘Adam’. Adam is a deep learning optimizer algorithm 

pre-programmed in Keras. There is a long list of possible optimizers available in Keras, but we 

have chosen to use Adam for two reasons. First of all it seems to be the most popular optimizer 

to use at the moment, but more importantly this optimizer gave far better training results than 

any other optimizer we have tried to use. 

Keras has a standard Adam optimizer, but it also has the possibility to configure the settings 

yourself by using the optimizers library. Between the parentheses there are multiple variables 

that can be assigned, namely lr, beta_1, beta_2, epsilon, decay and amsgrad. 

Lr is short for learning rate. This value is α in the previously stated learning function. 

𝐴𝑛+1 = 𝐴𝑛  −  𝛼 ∙  (𝐽(𝐴)′) 

In which An is the old position, An+1 the new position, α the learning rate and J’(A) the derivative 

of the cost function. 

We have set the learning rate to 0,001. This is also the default value in Keras and Tensorflow 

models. 

The values beta_1 and beta_2 are the so called ‘decay rates’ of the learning. They along with lr 

they define the final learning rate. This final learning rate αt is defined by the following 

function48. 

𝛼𝑡 =

𝛼 · √(1 −  𝛽𝑡
2

)

(1 − 𝛽𝑡
1

 )
   

This learning rate αt is subsequently used for calculating the step towards the local minimum. 

The epsilon is a value “that is used for numerical stability”49. The value ’None’ does not mean it 

is not present, or zero, it merely means that Epsilon is set to its default value of 10-8 50. This is 

the optimal value for the epsilon, as stated by Adam’s inventors Kingma and Ba51. 

                                                      
48 Kingma, D., & Lei Ba, J. (2015). Adam: a method for stochastic optimization. Retrieved on 5 december 2018, from 
https://arxiv.org/pdf/1412.6980.pdf 
49 Tensorflow. (2018, 20 november). tf.train.AdamOptimizer  |  Tensorflow. Retrieved on 5 december 2018, from 
https://www.Tensorflow.org/api_docs/python/tf/train/AdamOptimizer 
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The decay variable is set to 0.0, as is the default for the adam optimizer. This value is the “decay 

of the learning rate over each update”52. Learning rate decay was not mentioned in the original 

paper of Kingma and Ba, and we have stuck with Keras’ default because it seemed to influence 

the network negatively. 

The last variable is AMSGrad. If this variable is set to ‘True’ the Adam optimizer will convert into 

a different version of it, called the AMSGrad optimizer, created by S. Reddi, S. Kale and S. 

Kumar. The difference between Adam and AMSGrad is that AMSGrad aims to achieve better 

results by having the learning rate influenced by “long term memory of past gradients”53. This 

can be seen as an extension of the Adam optimizer. We have decided not to use the AMSGrad 

optimizer, as it did not provide the same amount of adaptability the regular Adam optimizer 

provided, in addition to not showing any notable difference in the training process. 

The last line of code calls the function model.compile(loss_calculator, optimizer). 

The loss_calculator is different depending on the input, which will be defined later in the code. 

This is a function that calculates the loss of the prediction, following the principle explained in 

chapter 5, Artificial Intelligence. The optimizer is the variable adam, which has been defined in 

the line of code above. 

The following piece of code is the training and testing of the network. 

    model.fit(x_train, y_train, epochs=200, batch_size=5, 

validation_data=(x_test, y_test)) 

    score = model.evaluate(x_test, y_test, batch_size=1) 

    print(score) 

 

The Keras command model.fit(dataX, dataY, epochs, batch_size) is the command for training 

the network on datasets X and Y, in our case our later defined variables x_train and y_train. 

The value of epochs is the number of times the training data is forwardpropagated through the 

network. The batch_size is, as its name implies, the size of the batch before the 

backpropagation occurs, in this model 5. 

The number of epochs has been defined as 200. Less epochs can lead to uncertainty in 

predictions and larger values make training the program take very long, thus it was set at this 

                                                                                                                                                                           
50 Keras. (n.d.). Optimizers - Keras Documentation. Retrieved on 5 december 2018, from 
https://Keras.io/optimizers/ 
51 Kingma, D., & Lei Ba, J. (2015). Adam: a method for stochastic optimization. Retrieved on 5 december 2018, from 
https://arxiv.org/pdf/1412.6980.pdf 
52 Keras. (n.d.). Optimizers - Keras Documentation. Retrieved on 5 december 2018, from 
https://Keras.io/optimizers/ 
53 Reddi, S., Kale, S., & Kumar, S. (2018). On the convergence of Adam and beyond. Retrieved on 5 december 2018, 
from https://openreview.net/pdf?id=ryQu7f-RZ 
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value. The batch size has been set to 5, as this seemed to be the optimal value. Larger or 

smaller batch sizes lead to higher overall loss and slower descent. 

The variable validation_data is the data used to test the network between epochs using 

different data than that on which the network is training. The program will then return the loss 

and val_loss when the testdata is run through the network. These values give an indication of 

the progress of the training. These values stagnate after a certain amount of epochs. Using 

validation_data gives insight in when this occurs and allows us to find the ideal batch size and 

number of epochs. 

The function model.evaluate is used to compute the loss value of testdata that is run through 

the model in test mode. This data is also used in the next bit of code, shown below. 

    x = 0 

    for x_indi in x_individual: 

        x += 1 

        print(x) 

        indiArray = [x_indi] 

        print(model.predict(np.array(indiArray))) 

 

This bit of code has the completed network predict the speaker of a given test input. The value 

x = 0 will increase after every prediction, thereby keeping track of the predictions. 

A loop is then called for the length of the imported value x_individual in which an array is made 

of x_indi (which is testdata that has not been run through the model before) on which the 

model will predict the outcome, whether it is Steven or Matthijs, by way of the function 

model.predict. 

 

For the next bit of code we will deviate from the order the program was written in for better 

comprehension of the next part of our explanation. 

f = open(trainFile + '.pckl', 'rb') 

x_train, y_train, x_test, y_test = pickle.load(f) 

f.close() 

 

f = open('store_1_multi_test_2.pckl', 'rb') 

x_individual, x_indi_test = pickle.load(f) 

f.close() 

 

This bit of code is in place to open our previously stored files form the data conversion, which 

we stored using pickle. The variables x_train, y_train, x_test and y_test which are used in the 

network are taken from the .pckl files from the conversion. The name “store_1_multi_test_2” is 

the name of the .pckl file we want to use for the network. This can be the name of any file we 

want, in this instance we have used this file. 
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The last bits of code are as follows. 

typeMulti = True 

if typeMulti: 

    trainFile = 'store_1_multi_5_2' 

else: 

    trainFile = 'store_1_sigmoid_1' 

 

 

if typeMulti: 

    tensorModel(2, 'softmax', 'mean_squared_error', trainFile) 

else:  

    tensorModel(1, 'sigmoid', 'binary_crossentropy', trainFile) 

 

First a variable called typeMulti is defined. In this case it is stated as ‘True’. In chapter 5, 

Artificial Intelligence different activation functions have been presented and explained. The 

entire model uses the ReLU activation, except for the output layer. This layer had its activation 

function defined when the function is called. The reasoning behind this is because of the way 

the model is given form. 

When having two possible outputs, there are two possible ways the output layer can be given 

form. A single neuron can be used, which means a sigmoid activation function is the most 

logical option to use in a classifier. However, another possible configuration is the use of two 

output neurons, which hold the possible outputs [0, 1] and [1, 0]. In this case the most logical 

activation function for the classifier would be to use a softmax function. 

The data conversion program shown earlier in this paragraph has two possible settings for 

labeling the data, a sigmoid version and a multi version. Depending on the way the network is 

configured it requires differently labeled data. This data is also stored in files with different 

names. 

If the variable typeMulti is ‘True’ a ‘multi’ file will be imported as training data. If it is false, a 

sigmoid file will be imported. The same idea holds true for the calling of the network itself. If 

typeMulti is ‘True’ the network will have 2 output neurons, a softmax activation function and it 

will use ‘mean_squared_error’ for computing the loss. If typeMulti is ‘False’ there will be a 

single output neuron which uses sigmoid as its activation function and ‘binary_crossentropy’ as 

its loss calculator. 

The reasoning behind the split between multi input and binary input is important to 

understand. Sigmoid is great for classifying between two categories. Since there were only two 

speakers to be verified, sigmoid was a natural choice to use. However, we decided to 

experiment with using a multi-type input for the classification system with the idea in mind that 

the program needed to be able to expand. A sigmoid classifier is unable to differentiate 

between more than two classes. However, softplus is able to calculate the output for multiple 

classes. These inputs can be labeled as a list, in which speaker one has the value [1, 0, 0], 

speaker two has the value [0, 1, 0] and speaker three has value [0, 0, 1]. This way the database 
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can incorporate additional speakers without having to completely remodel the network. The 

only difference is an extra neuron that has to be added to the output layer. 

 

7.4 Testing the neural network 

 Training data size 

Training a neural network can not be done with a few sets of input data. Neural networks 

trained to recognize hand written digits make use of a library containing 60.000 samples used 

for training and 10.000 samples for testing the network54. Neural networks require a large 

amount of data to train. Using large data sets to train a network will help the network classify 

similar, though unidentical data because as it has trained on a more varied dataset. 

Creating such a large dataset for speaker recognition is nearly impossible, as each sample is 3 

seconds in length. A dataset of 1000 samples would require 50 minutes of continuous speaking, 

disregarding the margin before and after the recording and storing the samples. Recording 100 

samples took about 30 minutes, six times the recording time. Moreover, the Fourier transform 

took about 3 seconds per sample, so that would take another 50 minutes of computation time. 

In total this means creating a 1000 sample database would take almost six hours without taking 

time to rest the voice. 

Recording audio samples using the mobile application was faster, though of lesser quality. 

Labeling the recording was a slowing factor, which the app got rid of completely. This way 

recording, converting and predicting an audio sample could be done in about 6 seconds. 

Most of our research was done using a database of 200 samples, made up in equal parts Steven 

and Matthijs. Testing was done in two different ways. First there was a small dataset of 15 

samples using which the val_loss was computed. In addition to this the app was used to test the 

network with entirely unique data each time. Using the app we recorded 200 test samples on 

which the network achieved an accuracy of 99 percent, suggesting 100 samples per person are 

sufficient for training the network. 

Even so, a larger database per person would likely be required when more speakers record 

training- and testdata. Humans can differentiate between two voices easily after having heard 

them a few times, but distinguishing 40 different people will take more time. The same holds 

true for artificial neural networks. As the number of possible outputs increases, more training 

data is required to effectively classify them. 

                                                      
54 Brownlee, J. (2017, 18 october). Handwritten Digit Recognition using Convolutional Neural Networks in Python 
with Keras. Retrieved on 5 december 2018, from https://machinelearningmastery.com/handwritten-digit-
recognition-using-convolutional-neural-networks-python-Keras/ 

https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
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 Converting the data 

The first version of the neural network had a different way of using the Fourier graph as input. 

In version 2 of the network the Fourier graph was used as input by dividing it into 50 equal 

parts, where in each part the average y-value was used as input. This way the entire Fourier 

graph is ‘compressed’ into 50 pieces of data. By doing this all information was used as input. 

Version 1 used the Fourier graph as input in a less complete way. Instead of compressing the 

graph we took coordinates on the graph as input. This meant 501 coordinates, equal distance 

apart along the x-axis, were put in an array. The position in the array represented the number 

of steps taken along the x-axis from the origin, the value in the array was the y-value of the 

coordinate. 

Version 1 had an accuracy of 99% using this technique, while training lasted 40 epochs. Despite 

this number looking very high, the network was not always very certain. About once every 15 

predictions the certainty was only 6/4. Version 2 also had an accuracy of 99% in addition to 

having a high certainty, with a 200 epoch training duration. The most significant improvement 

was the difference in the ability to recognize speakers based on the sentence “hey Google”. 

Network 1 had an accuracy of 79% when performing predictions on these inputs, whereas 

network 2 achieved an accuracy close to 100%. 

Moreover, the second network was more stable in training. The val_loss in version one 

fluctuated substantially. Each time the network was trained it had a different value, sometimes 

very low, other times very high. The val_los of version 2 consistently ended up at 0,3333. The 

certainty of this model was high as well. In the most extreme cases the uncertainty was 19/1. 

Even so, both networks achieved over 90% accuracy on ‘EEE’ samples, which was the initial goal 

we had set for this research. The reasoning behind the decision to create a second network was 

to improve training time and try to improve the ‘hey Google’ score, both goals were achieved. 

 

 Layers in network 1 

The first network had three hidden layers of 501 neurons. During testing it became clear that 

this was the ‘ideal’ amount of layers. Two hidden layers usually had between 80-95% certainty, 

with drops to 70 or even 60%, whereas a three hidden layer neural network consistently had a 

99.99% certainty, with fewer drops toward the 70% range. A network containing four hidden 

layers seemed to improve the network, as the val_loss was lower on average. However, there 

was no significant improvement in the predictions the network made on testdata. As smaller 

networks are less computationally heavy, the total amount of hidden layers was kept at three. 

The number of neurons in the input layer had been set to 501, a rather large number for an 

input layer. We chose to make it this large in order to encapsulate the entire Fourier graph. The 

number of neurons in the hidden layers was also 501. This was the configuration during most of 

our early testing. Smaller hidden layers compared to the input layer worsened the predictions. 
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Larger hidden layers slowed down the training process and did not yield any noticeable 

improvement of the network. Consequently, the size of the hidden layers was kept at 501 for 

most of the testing. 

The performance of this network can be seen in Attachments section A. 

 

 Layers in network 2 

The second network had three hidden layers of 50 neurons. Because the Fourier transform data 

was much more condensed a smaller network could be used for predictions. On the other hand, 

this network took 5 times as many epochs to train properly, taking about double the training 

time of the first network. During testing we found that hidden layers of 40 neurons proved to 

be equally as effective after training. Testing on this network was performed after a training 

time of 120 epochs, when convergence had already occurred (as can be seen in Attachments B). 

The number of hidden layers in this network was kept the same as the first network, as a 

different number of hidden layers negatively impacted the network. The same holds true for 

the dropout configuration. As no improvements were achieved changing these values, they 

stayed the same for the second network. 

The performance of this network can be seen in Attachments section B. 

 

 Layers in network 2 with three speakers 

Initially the network was remained configured the same way, the only difference being the 

addition of an extra output neuron for the new speaker. During testing it became clear that the 

network performed less on inputs which were not trained on, such as very low pitched ‘EEE’ 

sounds, or ‘hey Google’. We wanted to see if increasing the amount of inputs would improve 

the performance. What we noticed was a more stable val_loss. Note that this val_loss was 

computed on 56 test samples instead of 15. 

The number of hidden layers stayed the same for this network compared to the two-speaker 

configuration. 

The performance of this network can be seen in Attachments sections C and D. 

 

7.5 Performance of the networks 
There are a few values of paramount importance when looking at the performance of a neural 

network, the loss and the val_loss. These two terms have been used in this paper before and 

explained briefly. The loss is the cost, or the amount of error, the network has during training. 

This value is used to compute how much the weights and biases need to be appended. The 
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val_loss is similar to the loss, but this value is not used during the improving of the neural 

network, as it is the cost the network achieves on the test data after each epoch.  

Naturally, both the loss and val_loss should be as low as possible, as this means there is little 

error. Usually the loss will end up lower compared to the val_loss, as it is the value the network 

is actively trying to decrease. Therefore, when overfitting occurs the loss will be very low and 

the val_loss very high. 

We have plotted the loss and val_loss of network 1 and network 2 in the Attachments sections 

A and B respectively. 

When looking at the graphs in attachments A and B a few things are seen immediately. The loss 

usually reaches zero after around 20 epochs. The val_loss usually stagnates at around 0,3333. 

However, this does not mean one third of the predictions are wrong, as all of these 

configurations (excluding the configuration in Attachment A 4) had all test data predicted 

correctly, and with high certainty (above 99%). It should be noted that these networks only had 

15 test data samples to work with. The value 0,3333 seemed to be the minimum a well 

configured network could reach. When training a network for only 10 epochs the val_loss could 

be lower, but the predictions would be very uncertain. 

As stated before, both networks performed very well on ‘EEE’ test samples, achieving 99% 

accuracy over 200 training samples. This testing was done via the mobile application. However, 

the second network performed much better on training samples of ‘Hey Google’, where the 

first network achieved only 79% accuracy, the second network did not predict a single sample 

wrong. 

We later added a third speaker into the database, using the second network with an extra 

output neuron for predicting on the data. 

During part of the testing we increased the amount of input neurons from 50 to 100 for the 

three speaker network, meaning the Fourier graphs were translated more specifically. The 

predictions improved slightly in their certainty with about 0,1%. The greater difference however 

was the increase in training stability. Whereas the 50 neuron network had large fluctuations in 

the loss and val_loss, the 100 neuron network was extremely stable after 50 epochs, as can be 

seen in Attachments C and D. 

When a third speaker was added to the second neural network there was a significant drop in 

performance. The accuracy of the network when predicting on ‘EEE’ dropped from 99% to 90%. 

The and the predictions on ‘hey Google’ from 99% to 76%. Strangely enough the network did 

not predict wrong on each speaker equally. 
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 EEE Hey Google 

Matthijs 100% 99% 

Steven 90% 38% 

Henriet 80% 92% 

Average 90% 76% 
 

Matthijs was predicted correct almost every time. Steven’s ‘EEE’ samples achieved an accuracy 

of 90%, whereas his ‘hey Google’ samples were only predicted with 38% accuracy. This was to 

be expected, as the network did not specifically train on these samples. Still, the fact that only 

Steven’s samples of ‘hey Google’ were predicted falsely was rather strange, as we expected a 

more uniform drop in accuracy across all speakers. 

The cause of the large drop in the total accuracy of the network when predicting on ‘EEE’ 

samples was largely caused by the Henriet. On average the network achieved an 80% accuracy 

when predicting on Henriet’s ‘EEE’ samples. However, there were drops toward the 47% range 

and peaks at 100%, depending on what local minimum was reached. Each time the model is 

trained, the convergence occurs at a different local minimum, which seemed to impact the 

Henriet training data rather substantially compared to that of Steven and Matthijs. 

This is a great example of the impact local minima have in the accuracy of neural networks. 

Sometimes the network achieved 95% total accuracy on test samples and other times only 80%. 

This also raises the question on how dependable the percentages on test samples actually are. 

If the performance of a network can fluctuate so much on the local minimum it happens to 

reach, how trustworthy is the network actually? 

The reason Henriet above everyone was impacted so heavily by this could be traced back to the 

Fourier transform graphs. When looking in section E of the Attachments it can be clearly seen 

that Henriet has the least peaks in her graphs. There are less distinguishable features in her 

Fourier graphs compared to Steven and Matthijs, possibly leading to them being ‘overtaken’.  

What also might have impacted the drop in accuracy was the use of a different microphone 

during the recording of Henriet’s train and test data. The training data of Steven and Matthijs 

was recorded using a microphone connected to a PC, whereas Henriet’s training data was 

recorded using the same microphone connected to a phone. The differences in the way the 

audio was processed could have influenced the network, as the training samples were not all 

recorded in a uniform way. 

It should be noted that this testing was done on the 50 division network, not the 100 division 

one. As the 100 division can define signatures better, the later parts of the Fourier graphs 

would have been encapsulated better, perhaps leading to better performance. However, we 

were not able to test this due to time constraints. 
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7.6 Summary 

The research we have conducted was divided in three main parts. The recording of the voices, 

which was the easiest part of the research. This does not mean it was the least important part, 

as it is the foundation of all our research. To provide the network with the best input possible 

the way voices were recorded was standardized for to uniform the recordings. 

The Fourier transform code was the next part of the research. Raw .wav audio files were 

converted to data that could be used as input for the network. Properly ordening the 

transformed audio was imperative for it to be used as input. The transformed data had to be 

labeled properly depending on the type and the file it was stored in had to be named 

accordingly. 

When programming the networks it was important the code was clear and easily edited. Using 

Keras proved to be a good choice as it helped keep the code clean and being able to change the 

code quickly. The trickiest part of using our neural network was tweaking all the features of the 

network so that it achieved optimal results with the least amount of training required. Number 

of layers, neurons, dropout, optimizers and loss calculators were all variables that had to be 

manually adjusted. 

After hours of testing and tweaking the program the final network was able to achieve 99% 

accuracy in predicting voices between two people, an astonishing percentage. The change that 

was made in the way the Fourier transform was used as input increased the network accuracy 

on the input “hey Google” drastically. However, the addition of a third speaker caused a 

considerable drop in accuracy. Performance on ‘hey Google’ dropped the most, to 76%, and on 

‘EEE’ the accuracy dropped to an average of 90%.   
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8. Conclusion 

The thesis question for our research was the following: 

“Is it possible to create a deep neural network that can recognize a voice with an accuracy 

above 90 percent?” 

Additionally, we formulated two partial questions: 

1. Will the accuracy of the predictions remain the same when a third speaker is added? 

2. How does a decreased number of neurons affect the accuracy of the predictions?   

The research we have conducted was centered around the main thesis question. The first 

partial question is an inherent part of this research, whereas the second partial question was 

focused on the ability to combine different technologies. 

During our research we created a neural network that can classify two, and later three, people 

based on only their voice. The Fourier transform was used for transforming the audio samples, 

after which it was used as input for the network. After training, this network had a 99% 

accuracy in classifying between two speakers, meaning our hypothesis was correct.  

When a third speaker was added to the network the performance dropped substantially. 

Predictions on ‘hey Google’ to 76% and on ‘EEE’ to 90%. Interestingly, Matthijs was predicted 

correctly 99% of the time on ‘EEE’ samples, whereas Steven and Henriet were predicted 

correctly 90% and 80% of the time respectively. 

Henriet’s performance was the most curious. Sometimes the network achieved 100% and other 

times merely 47% accuracy. The local minimum the network achieved impacted the accuracy of 

the predictions on her test data very much. Why this was especially her data can be traced back 

to the recording of the training data, which was recorded using the same microphone, but 

through a different device. Henriet’s data was added to the training database using the app, 

meaning the audio was processed by the iPhone SE she used. The quality of these recordings is 

naturally different compared to the PC by which Steven and Matthijs’ audio was processed. 

Additionally, the Fourier graphs of Henriet have less distinct peaks compared to both Steven 

and Matthijs. Henriet usually had 4 peaks, whereas Steven and Matthijs usually had additional 

peaks further right in the graph. 

The first network took 40 epochs to train, which it did on a database of 100 samples per class, 

meaning 200 samples in total. After training this network could differentiate these speakers 

with an accuracy of 99 percent. This accuracy was measured using the app, where we both gave 

100 new inputs. These inputs were of the same type the network had trained on, three 

continuous seconds of “EEE”. 

Furthermore, the second network was also able to identify speakers when the input was unlike 

the training input. We both used the app to give 60 inputs to the network, where we said: “Hey 
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Google”. Despite the network never having trained on these inputs it still achieved a 79 percent 

accuracy. 

The second network took 200 epochs to train. While this may seem like a step back, the 

network was ten times smaller than the first network. Consequently, training time was 

significantly decreased. Even using only 40 epochs this network trained much faster than the 

first network, while having the same certainty in its predictions. 

After training 200 epochs this network also achieved a 99% accuracy in classifying “EEE” input. 

However, the program had an astonishing improvement in classifying based on the “hey 

Google” input, a 100% accuracy. Of course, a 100% accuracy is impossible to attain as the 

testing is susceptible to chance. Nonetheless it is clear the second network improved upon the 

first in this regard. This could be in large part due to the fact the entire Fourier transform was 

used as input instead of just a few coordinates. In addition to this the training process of this 

network was more stable. The val_loss of the first network ended up at a random value each 

time the network was trained. On the other hand, the val_loss of the second network 

consistently ended up at 0,3333. The graphs of the loss and val_loss are shown in Attachments 

A through D. These graphs show the amount of epochs to reach convergence, as well as the 

unpredictability of the network (see the difference between Attachments C and D). 

It is important to keep in mind the fact that an untrained network with a set amount of possible 

outputs will have a base accuracy. An untrained network will not have high certainties, instead 

it will give all outputs some, seemingly random, value. 

During testing we let the first network predict outputs without having been trained 

beforehand. This yielded the expected results. Both classes got an equal 50/50 split in 

confidence, with variations in the single percentage range. This gave a natural 50% accuracy for 

the untrained network. Training this network obviously improved the accuracy rate, up to the 

previously stated 99%. This is a significant change, but a base accuracy of 50% makes it seem 

less of a development. 

However, as the confidence of the predictions was so low (50/50), they should not be 

considered valid. For our testing we considered a prediction viable only if the certainty was 80% 

or higher, which it was 100% of the time, usually is was a 99,9% certainty. 

When a third speaker was added the certainty of the predictions did not deteriorate much. The 

certainty of the predictions stayed in the 99% range. The untrained network with three output 

neurons had predictions of [0,3333 0,3333 0,3333], or a 0% certainty. The trained network 

achieved certainties of 99% and higher. 

Moreover, when we shortened the length of the Fourier divisions so that the graph was divided 

in 100 parts instead of 50, the loss and val_loss became substantially more stable, as shown in 

Attachments C and D. Consequently, the predictions went up in certainty as well. 
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8.1 Possible improvements and further research 

 Increasing dependability of the network 

When a third speaker was added to the network the impact of different local minima was 

shown. The performance of the network fluctuated between 80 and 95 percent. As the local 

minimum the network happens to reach influences results so substantially, one is left to 

wonder how dependable the network actually is. There is a 15% difference in network accuracy 

depending on the local minimum that is reached.  

More research is required to find out how much the network is impacted and how to prevent 

this from happening in the future. We had very little time left to do research and perform tests 

on this subject. The initializing of the network was set as ‘uniform’ in our network. Different 

initializations change the direction the program will compile in. The dropout has a part in this as 

well, adding a randomness factor to the training. In the end, we had too little time left to 

properly go through on these ideas, but further research would certainly shed some light on 

how this aspect of the neural network can be improved. 

 

 Handling unrelated input 

After training, both programs were very, for lack of a better word, absolute in making their 

decision. If a completely unrelated person would give input for the program the outcome would 

always be very certain. Instead of a more realistic 0% the output always was very determined. 

This phenomenon could be explained due to the fact the network only has two possible classes 

and two, rather distinct, types of input. If the network trains too much on these specific data 

types it can lead to a type of overfitting, where the network divides the data between the 

classes, and everything that falls even a little bit into either class will be confidently classified as 

Steven or Matthijs, there is no ‘grey area’. The addition of Henriet seemed to decrease this 

absoluteness somewhat, though not very substantially. 

There are a few possible ways this phenomenon could be prevented. First a classical approach 

to preventing overfitting could be used by reducing the amount of epochs trained or using 

dropout. This will however make the network less effective in classifying valid inputs as well. 

Another possibility is the addition of more possible output classes, so that such a division is less 

likely to be formed. With enough possible classes the chance of having a unrelated sample 

being placed in but one class will be very small. Finding balance between classifying valid inputs 

and not overfitting invalid inputs would require great amounts of testing. 

 

 Improving the training process 

Currently the network requires a lot of training data before attaining a high accuracy during 

testing. Our results were achieved using a database of 200, and later 300, samples, that took 

over an hour to record. The network proved to be able to predict correctly when provided with 
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less training data, but the accuracy dropped significantly, even disregarding certainty and base 

accuracy. When more possible outputs are provided, this accuracy will drop even further. 

Before voice recognition can be used in normal day-to-day environments the training process 

will have to be improved. Recording 100+ data samples is not attractive for consumers. Possibly 

a different way of representing the data to the network will lower the amount of required 

training samples. This means that something different than the Fourier transform will have to 

be used to transform the voices into input for the network. 

 

 Handling fluctuations in the voice 

Another problem with our voice recognition program is the fact that an individual’s voice is 

prone to change. Soar throats and fevers can cause significant differences in the sound of a 

voice. Moreover the network has difficulties when a voice is higher or lower pitched. Changing 

the pitch and way input was said influenced the accuracy of the network. As we used Fourier 

transform, which is specifically designed to compute the frequencies of a sound, changing the 

pitch (frequency) of a voice will therefore impact the Fourier transform, and by extension the 

input as a whole. 

 

 Recognizing voices using different audio inputs 

The Fourier transform has proven to be an effective way to transform raw audio into usable 

input for a neural network, as a 99% accuracy rate was achieved with two speakers and  90% 

with three speakers. Nevertheless, the Fourier transform lacks in a few aspects. The input was 

very sensitive to changes in the voice pitch and inputs that are dissimilar to “EEE” gave results 

with low certainty, especially long sentences. The Fourier transform of long sentences is very 

different compared to a single “EEE” transformation. For the network to be able to classify 

people based on any given sentence another way of representing the speakers as a whole will 

have to be used, as the Fourier transform is not fit for such inputs. 

 

 Reconstructing voices 

Now that we have been able to classify people based on their voice, a natural continuation 

would be to ‘reverse’ the process. Software such as google translate already has the ability to 

convert text to speech. It could be possible to reverse the voice recognition process to get a 

‘model’ of someone’s voice. By conjoining this with text-to-speech software a program could be 

created that is able to construct audio this sentence as if it was said by the test subject. The 

sentence would be said using the test subject’s voice. However, it would require a more 

complete comprehension of the voice than a simple Fourier transform of “EEE” to create such a 

model. In short, before a program like this could be created, there will have to be found a way 
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to more completely encapsulate a human voice, that can also be used in conjunction with a 

text-to-speech converter. 

 

8.2 Summary 
Our thesis is “Is it possible to create a deep neural network that can recognize a voice with an 

accuracy above 90 percent?”. The answer to this question is: “Yes we are able to train a neural 

network to recognize a voice with 90 percent accuracy”. On ‘EEE’ inputs the second neural 

network achieved 99% accuracy using only 200 training samples and 90% accuracy when using 

300 training samples. In addition to this, the network only takes fifteen to twenty seconds to 

train properly. As was expected, on inputs that do not have clear “EEE” sounds in them the 

network proved to be significantly worse in making predictions. Additionally, the amount of 

data samples it took to train properly was very large, though comparatively small for neural 

networks in general. 

The addition of the third speaker caused a considerable drop in accuracy, though it stayed 

above 90%. These drops were caused by the local minimum the network happened to reach. 

Depenidng on how the model was compiled the performance could be above or below 90%, 

though on average it achieved 90%. 

Even so, the thesis question can be answered positively. Possibilities for improvement of the 

current network and suggestions for topics that require further research are namely the way 

the voice is represented as data. The Fourier transform is effective but flawed. The network 

itself is effective in its designated task, but it requires a lot of training data. With further 

research these flaws will be improved and the technology of voice recognition shall be one step 

closer to perfection. 
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9. Applications 

9.1 Verification and identification 

 Security 

Could there be applications for voice recognition after it has been researched and developed 

further? We have come up with a few ideas. The first application that comes to mind with an 

identification program is security. Voice identification could be used to unlock devices or apps 

in much the same way a fingerprint or face scan works in modern cell phones. The danger is in 

this case that our program is specifically designed to recognize recorded voices. A voice 

recording could be used by someone with bad intensions to get access to sensitive information. 

To prevent this voice recognition could be used in conjunction with speech recognition, a 

technology already widely used around the world. Voice assistants such as Siri and Alexa use 

speech recognition since 2011. By combining voice identification with speech recognition a far 

more secure program can be created. 

For example, to unlock a phone a series of three words could be shown on screen, like 

“cranberry, elephant, Microsoft”. These would be randomly selected from a database 

containing thousands of possible words. A speech recognition program would verify is these 

words have been said, after which a speaker recognition program will verify if the speaker is in 

fact the right person. This way a previous recording of a person’s voice would not be sufficient 

to fool the program, as the words said would prevent this from happening. 

To further increase security a small bit of software could keep track of combinations that have 

already been said, so that a unique combination of words would be said each time. This way, a 

1000 word database can provide close to one billion different word combinations, and a 10.000 

word database close to a trillion different combinations. If the voice identification software is 

sufficiently developed the only way to fool the program would be to have a recording of all 

10.000 possible words and playing the ones requested when unlocking. 

 

 Investigation 

In addition to providing security voice identification could also be used in crime fighting. Audio 

recordings of crimes could be used to identify the criminal that is speaking. The audio could be 

run through a database the same way fingerprints are, and if a positive match is found this 

suspect could be investigated further. This way wearing a mask and gloves during a robbery 

would not be enough for criminals to remain anonymous, as even saying a single phrase would 

help police officers in identifying the culprit. 

 



 56 

9.2 Voice assistants 

Aside from security and criminal investigations voice recognition could also be a quality of life 

improvement. A voice assistant such as Siri or Alexa could identify the person speaking. A voice 

assistant could save preferences of people. For example, you could say to the assistant “play my 

favorite playlist”, leading to the assistant playing the specific speaker’s favorite playlist. These 

are small, arguably unnecessary improvements, but they could nonetheless be implemented in 

every voice assistant if there is demand. 

 

9.3 Summary 

In short voice recognition is software that has possible, but not necessary, applications. Speaker 

recognition can be used for security, especially in conjunction with speech recognition. The 

question is whether or not this is actually necessary with other ways for protection already in 

place. Fingerprint scan and facial recognition are widely used technologies that are secure and 

dependable. Speaker verification will have to compete on a market with a range of possibilities. 

Speaker recognition can however improve voice assistants. Again, possible additions will make 

them easier and more accessible to use, though are not necessary by default. Voice recognition 

is a niche technology that has applications, but can be seen more as a luxury rather than a 

necessity. Still, before speaker recognition can be used in this way, more research should be 

done into improving accuracy. Our goal of over 90% accuracy was met, but when dependable 

security is required, especially with larger databases, accuracy will need to be improved. 
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10. Review 

Early research, spring and summer 2018 

Our research had its share of flaws. We started in April 2018, with very little knowledge of 

artificial intelligence and its aspects. We were overwhelmed by the sheer scope of different 

facets and possibilities in the field of AI research. We started by reading online on sites such as 

Wikipedia to get an idea on what subject within AI we would research. We spent many hours 

on the internet where we tried to learn as much of different subjects as possible. 

These hours would have been better spent increasing the scope of our knowledge instead of 

trying to obtain in depth knowledge of each subject. In addition, our focus should have laid 

more on applications of AI rather than theoretical research. Moreover, we spent lots of time 

watching MIT lectures and looking on AI crash courses. The MIT lectures where too theoretical 

and the crash courses were too specifically focused on certain problems. 

On the other hand the brainstorm sessions we had were very productive. During these sessions 

we eliminated subjects which were either impractical or beyond our capabilities. We also went 

around and tried to think of as many possible applications of AI that we could research. 

Start of voice recognition, early autumn 2018 

At the end of summer 2018 we decided on our final subject, voice recognition. After the subject 

had been chosen our productivity rose substantially. We could research on AI with a specific 

goal in mind. We visited physics teachers for advice on how to handle voices and we started 

specifically researching neural networks. We got the Fourier transform code working within a 

few days and already had an idea on how to input them in a neural network in spite of the fact 

we were not yet certain on how to create a neural net. Once we found out how to create neural 

networks using Keras we got the code working in a few days 

In hindsight we should have started researching on Tensorflow and Keras sooner. These 

libraries made creating neural network much easier than we had expected. Tutorials on the 

internet created neural networks neuron by neuron, whereas in Keras they could be created in 

a few lines of code. Even so, this part of the research was very productive. 

Stagnation in project, mid-autumn 2018 

Even though the code was running without errors it did not seem to be working properly. Even 

though the loss was decreasing rapidly another value, the val_loss, fluctuated heavily. Every 

time the model was trained this value reached another, seemingly random, value. As the 

val_loss was the loss the model had on the testing data, we were under the impression that the 

model suffered from overfitting. 
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Weeks later we realized that this may not have been the case. We used the Keras function 

model.predict to see if the model was indeed bad at predicting on test data. We found, to our 

surprise, that the model predicted all testdata perfectly, and with high certainty. 

Had we used the model.predict function earlier we would have spared over a week of research 

time. Our narrow vision, relying solely on the val_loss as indication of the accuracy, cost us 

valuable time. 

Rapid progress, late autumn 2018 

After we realized the network was working properly we started making great progress in our 

research. We started working on the paper and decided we would create a mobile application 

for easier use of the network. Over the span of six weeks we thoroughly tested the network and 

Keras’ different capabilities and improved the architecture of the network. After the network 

had been optimally configured we recorded over 300 samples to test the network and gather 

percentages of accuracy. 

In November we received a suggestion from a student of the Hague University who was 

following a machine learning course regarding the use of the Fourier transform as input. 

Instead of coordinates he suggested a more complete way to encapsulate the Fourier graph. 

During testing the results on the sentence ‘Hey google’ improved substantially, from 79% to 

99%. 

We were writing the paper during this time as well. The chapters were written over the span of 

a few weeks and without the need to revise large sections of the paper. All in all the research 

was progressing in great paces during this time. 

Concept version, early December 2018 

The end of November was reached very fast, and our focus shifted from testing the network to 

writing the paper. Days before the deadline the paper still was not finished. The conclusion and 

large parts of the chapter on the research were still missing. On the day of the deadline we 

were still writing, and when handing in the concept version we had not yet revised any of our 

recent writing. 

The mistake we had made was underestimating the amount of work the paper would require to 

finish. We should have written more of the paper in the free time we had the weeks before the 

deadline, instead of the deadline day itself. Writing a paper is not merely writing text, but also 

deciding which part of the text need to be improved or omitted. Nevertheless the paper was 

complete and handed in on time. However, we should have learned from this mistake the first 

time, as we immediately made it again. 

Stand still, December 2018 and early January 2019 

During the Christmas holiday work on both the paper as well as the program stagnated. We did 

not do anything on the research despite the fact we had lots of free time, which would later 
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lead to lots of stress and hasty work in the last week before the final deadline. We should have 

spent this time more wisely and finished the research before the end of the holiday. 

Final sprint, January 2019 

After the Christmas break we realized how much still had to be done in only 2 weeks of time, 

including the addition of a third speaker, adding further functionality to the mobile application 

and a great amount of writing on the paper. We made a timetable using the scrum project 

management technique, where we divided the remaining time in sprints, over which we spread 

all the remaining work equally. Even so, there was much work and little time. Over these two 

weeks deadlines for normal school projects had to be met as well, increasing the stress even 

more. Even though the paper was finished on time, we realized we should have done more 

work during the Christmas break instead of working double-time during the semester itself. 

In the end the paper was handed in before the deadline. Even though the process could have 

been smoother, and mistakes were made along the way. We feel the paper is complete, and we 

are proud of the final product. 
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11. Summary 

11.1 English 
Our goal was to create a program that can identify speakers with an accuracy over 90%. In this 

goal we have succeeded. The research consisted of two parts, converting audio files to input, 

and creating a program that is able to make predictions based on this input. 

After the voices were recorded, we converted the audio files using the Fourier transformation. 

This gave us a graph of the frequencies the voice was made up of. With the same sound, this 

graph is unique for every person, and thus viable for use in identification. By dividing this graph 

into segments and taking the average of the graph for each segment we ‘compressed’ the 

graph into 50 values. 

These 50 values were used as input for our program. To compute the data we decided to use a 

neural network, a type of AI which is based on the human brain. Neural networks are 

structured in layers, where the data is given to the input layer and computed in the hidden 

layers, after which the result will be presented in the output layer. 

For our network we created an input layer of 50 neurons, one for each piece of the Fourier 

graph. The data was then forwarded through three hidden layers, each containing 50 neurons. 

The data was the presented in the output layer, which consists of three neurons, one for each 

of the three speakers. 

Using these techniques, the network managed to achieve an accuracy of 99% when tested on 

two hundred new samples with two speakers, which was well over our initial goal of 90%. Thus, 

by using deep learning algorithms we have created a program that can identify known speakers 

with an accuracy over 90%. 

 

11.2 Dutch 
Het was al vrij snel duidelijk dat wij onderzoek wilden gaan doen naar artificiële intelligentie. Dit 

was echter een erg breed thema maar na veel brainstormen kwamen we toch op een specifiek 

vraagstuk uit. Stemherkenning werd het uiteindelijke onderwerp. Ons doel was gezet op het 

maken van een programma dat sprekers kon herkennen aan de stem met een minimale 

nauwkeurigheid van 90%. 

Ons onderzoek bestond uit 3 onderdelen, het opnemen van de stemmen, het verwerken van de 

stemmen en het maken van een programma dat iets met deze input kon. Door de sectie 

natuurkunde werden wij in de richting van de Fourier transformatie gewezen, een wiskundige 

bewerking die frequenties uit een stem kan halen. Deze frequenties vormen bij elk persoon, 

gegeven dat er gebruikt wordt gemaakt van hetzelfde geluid, een unieke grafiek, die wij kunnen 

gebruiken om mensen te herkennen. 
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Er zijn verschillende soorten AI met verschillende manieren waarop ze functioneren. Artificiële 

neurale netwerken zijn een van de meest gebruikte types AI tegenwoordig, en hun kenmerken 

waren geschikt voor ons onderzoek. De Fourier grafiek deelden wij op in 50 gelijke delen, 

waarvan wij de gemiddelde y-waarde namen. Dit gebruikten wij als input voor het neurale 

netwerk. 

Een neuraal netwerk heeft een ingangslaag, waar de data ingegeven wordt, een of meerdere 

verborgen lagen, waar de berekeningen plaatsvinden, en een uitgangslaag, waar het 

uiteindelijke resultaat wordt gegeven. 

Wij hebben enkele honderden opnames gemaakt van onze stem, elk drie seconden met een 

continu ‘EEE’ klank. Na het verwerken van deze opnames worden deze tientallen keren door 

het programma gebruikt om te trainen, waardoor de verbindingen in de verborgen lagen 

geoptimaliseerd worden. 

Het netwerk dat wij hadden gemaakt bestond uit een ingangslaag van 50 neuronen, één voor 

elke inputwaarde, drie verborgen lagen van elk ook 50 neuronen en een uitgangslaag van 2 

neuronen. 

De uiteindelijke resultaten die het netwerk behaalde overtroffen onze verwachtingen. Het 

netwerk had met twee personen een accuraatheid van 99%, meer dan ons doel van 90%. Wij 

hebben dus door gebruik van de Fourier transformatie en een neuraal netwerk een programma 

weten te maken dat sprekers kan herkennen op basis van een 3 seconden lange audio opname 

met een accuraatheid van 99%. 
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12. Logbook 

Hours Matthijs Ates 

Date Time Activity 

17/4/2018 1 hour Reading about AI 

18/4/2018 1 hour Reading about AI 

20/4/2018 20 minutes Reading about AI 

28/4/2018 30 minutes Reading about AI 

06/5/2018 45 minutes Lecture MIT 

10/5/2018 50 minutes Lecture MIT 

13/5/2018 50 minutes Lecture MIT 

14/5/2018 50 minutes Lecture MIT 

15/5/2018 1 hour + 40 minutes Lecture MIT 

24/5/2018 45 minutes Lecture MIT 

31/5/2018 4 hour + 45 minutes Sources lecture, looking for sources, brainstorming and 
defining our timeframe 

01/6/2018 1 hour Brainstorming and choosing thesis 

18/8/2018 2 hours + 30 
minutes 

Videos: Essence of Linear Algebra 

27/8/2018 2 hours Seeking out learning material and expanding framework 
paper 

10/9/2018 1 hour + 20 minutes Working out second thesis, spoke to physics teacher 
regarding voice recognition and partial questions 

12/9/2018 5 hours Working out Fourier transform in python, defining 
thesis, video on Fourier transform 

13/9/2018 6 hours Worked out Fourier transform using testdata 

16/9/2018 1 hour + 5 minutes Videos on neural networks 

20/9/2018 1 hour + 45 minutes Tutorial, building a neural network in python 

21/9/2018 3 hours + 20 
minutes 

Learning about creating a neural network. Creating and 
training a neural network, evaluating results 

23/9/2018 1 hour Testing neural network by computing values and 
differentiating functions 

21/10/2018 1 hour + 30 minutes Finding information on Tensorflow and defining tems 
for clarity 

22/10/2018 2 hours Reading guides regarding neural networks in Keras and 
activation functions 

23/10/2018 3 hours + 45 
minutes 

Finalizing, testing and optimalizing network, recording 
audio samples 

24/10/2018 3 hours + 45 
minutes 

Downloading code from github, testing network, 
recording audio samples 

25/10/2018 2 hours Converging Keras and conversion files, recording audio 
samples, testing code 
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04/11/2018 1 hour Starting paper chapter AI 

06/11/2018 1 hour + 20 minutes Reading papers on speaker recognition 

07/11/2018 20 minutes Continuing paper chapter AI 

08/11/2018 1 hour + 30 minutes PWS meeting supervisor, continuing paper chapter AI & 
machine learning 

11/11/2018 45 minutes Paper section voice_rec & NN’s and neural networks 

12/11/2018 2 hours + 20 
minutes 

Paper section neural networks 

16/11/2018 2 hours + 15 
minutes 

Paper section neural networks and start voices in 
general 

17/11/2018 50 minutes Paper chapter voices in general 

18/11/2018 1 hour + 35 minutes Paper section Fourier transform 

19/11/2018 1 hour + 15 minutes Paper chapter Fourier transform and inserting pictures 
NN 

22/11/2018 45 minutes Paper section recordingvoices 

28/11/2018 40 minutes Paper section recording voices & transforming voices 

05/12/2018 5 hours Paper section neural networks & creating the network 

7/12/2018 4 hours + 50 
minutes 

Paper section using the NN, testing the network and 
finishing chapters 1 and 2 

8/12/2018 35 minutes Paper section applications 

9/12/2018 4 hours + 25 
minutes 

Paper conclusion and abstract, doing testing on 
untrained network, testing network 2, listing sources 

10/12/2018 2 hours + 20 
minutes 

Finishing using the neural net, making to do list, 
finishing paper, writing summaries, front page, etc. 

8/01/2019 30 minutes Making final planning + working out app improvement 
ideas 

9/01/2019 1 hour Technical design app 

12/01/2019 30 minutes Writing summary (English) 

13/01/2019 2 hours Adding labels to pictures, improving writing, writing 
functional design 

15/01/2019 4 hours Testing and improving new app, writing summary 
(Dutch), writing first parts of review, gathering data 

16/01/2019 5 hours + 40 
minutes 

Working on and testing of application and network, 
recording samples, writing on chapter research, 
gathering data, fixing onedrive file 

17/01/2019 5 hours + 10 
minutes 

Gathering data + Fourier graphs, writing on chapter 
research, finishing paper in general 

18/01/2019 50 minutes Writing on philosophy 

19/01/2019 1 hour + 10 minutes Incorporating feedback, finishing paper 

20/01/2019 5 hours + 20 
minutes 

Incorporating feedback, finishing paper, conclusion 

21/01/2019 1 hour + 50 minutes Finishing paper 
Total: 110 hours + 55 minutes 
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Urenlijst Steven van den Wildenberg 

Date Time Activity 

18/4/2018 1 hour Reading 

30/4/2018 2 hours + 5 
minutes 

Brainstorming & search for information 

13/5/2018 45 minutes Lecture MIT 

29/5/2018 1 hour + 30 
minutes 

Reading 

31/5/2018 4 hours + 45 
minutes 

Sources lecture + finding sources + brainstorming + 
making a planning 

01/6/2018 1 hour Brainstorming and choosing thesis question 

22/6/2018 50 minutes Reading 

24/7/2018 1 hour Setup idea & podcast think tank about AI 

27/7/2018 2 hours Search for learn material and expand research idea 

28/7/2018 1 hour + 30 
minutes 

Part of the video’s: Essence of Linear Algebra 

29/7/2018 1 hour Rest of the video’s: Essence of Linear Algebra 

02/8/2018 2 hours + 10 
minutes 

MIT Linear Algebra lectures 1-4 on 1.5x speed 

03/8/2018 1 hour + 40 
minutes 

MIT Linear Algebra lectures 5-7 on 1.5x speed 

04/8/2018 2 hours + 10 
minutes 

MIT Linear Algebra lectures 8-11 on 1.5x speed 

14/8/2018 2 hours + 30 
minutes 

Book: Introduction to linear algebra fourth edition, 
chapter 1 and a part of chapter 2 

16/8/2018 1 hour + 30 
minutes 

Excercises 1.2 and 1.3 

10/9/2018 1 hour + 20 
minutes 

Figure out thesis statement + ask physics teacher for 
more information 

12/9/2018 5 hours Fourier transformation/ python/ thesis/ research 
requirements 

13/9/2018 6 hours Worked out Fourier transformation with testdata, 
pitch and beginning of paper 

19/9/2018 2 hours Research STFT and search for better replacement of 
Fourier transformation 

20/9/2018 1 hour + 40 
minutes 

MFCC plotting in python and search for 
documentation/info alternatives 

21/9/2018 1 hour + 20 
minutes 

Learn about making a neural network together with 
Tensorflow 

28/9/2018 1 hour + 20 
minutes 

Write introduction 

21/10/2018 1 hour + 30 min Research Tensorflow + define complicated terms 
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22/10/2018 4 hours Clarity Keras, get y-values Fourier transformation in 
python and compare graphs of vowels 

23/10/2018 5 hours + 30 
minutes 

Create train data, convert train data and test out the 
train data on the neural network 

24/10/2018 4 hours Record train data and remove some inconsistent train 
data 

05/11/2018 2 hours  Search and test Tensorflow speaker recognition on the 
internet 

08/11/2018 30 minutes PWS conversation with mentor 

12/11/2018 1 hour + 20 
minutes 

Work on neural net 

19/11/2018 3 hours Make test version MFCC neural net  

28/11/2018 6 hours Make app + backend app 

29/11/2018 4 hours Finish backend app 

07/12/2018 3 hours Editing/improving and writing new text + add new 
code 

10/12/2018 3 hours Describing Fourier conversion code, editing paper in 
general 

11/01/2019 3 hours ‘Re-creating’ the iOS and creating the android 
application 

12/01/2019 5 hours Continue with creating the application 

13/01/2019 10 hours Continue with creating the application (fixing bugs 
mostly) 

14/01/2019 5 hours Finishing the android and iOS application 

15/01/2019 1 hour Working on and testing of application 

16/01/2019 3 hours Fixing third speaker and debugging the application 

17/01/2019 3 hours + 30 
minutes 

Editing paper and added Python explanation 

20/01/2019 4 hours + 30 
minutes 

Editing last details of the paper 

21/01/2019 2 hours Finishing up the paper 

Totaal: 116 hours + 35 minutes 
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14. Attachments 

14.1 Section A: Network 1 
 

 

Attachment A 1: Loss and val_loss plotted over 200 epochs 

 

Attachment A 2: Loss and val_loss plotted over 200 epochs 
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Attachment A 3: Loss and val_loss plotted over 200 epochs 

 

Attachment A 4: Loss and val_loss plotted over 200 epochs (predictions were wrong with this configuration as well) 
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14.2 Section B: Network 2 with two speakers 
 

 

Attachment B 1: Loss and val_loss plotted over 200 epochs 

 

Attachment B 2: Loss and val_loss plotted over 200 epochs 
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Attachment B 3: Loss and val_loss plotted over 200 epochs 

 

Attachment B 4: Loss and val_loss plotted over 200 epochs 
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14.3 Section C: Network 2 with three speakers (50 neurons) 
 

 

Attachment C 1: Loss and val_loss plotted over 200 epochs with 50 neurons 

 

Attachment C 2: Loss and val_loss plotted over 200 epochs with 50 neurons 
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Attachment C 3: Loss and val_loss plotted over 200 epochs with 50 neurons 

 

Attachment C 4: Loss and val_loss plotted over 200 epochs with 50 neurons 
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Attachment C 5: Loss and val_loss plotted over 200 epochs with 50 neurons 
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14.4 Section D: Network 2 with three speakers (100 neurons) 
 

 

Attachment D 1: Loss and val_loss plotted over 200 epochs with 100 neurons 

 

Attachment D 2: Loss and val_loss plotted over 200 epochs with 100 neurons 
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Attachment D 3: Loss and val_loss plotted over 200 epochs with 100 neurons 

 

Attachment D 4: Loss and val_loss plotted over 200 epochs with 100 neurons 
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14.5 Section E: Fourier graphs 
 

 

Attachment E 1:Fourier Henriet 10 

 

Attachment E 2: Fourier Henriet 60 
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Attachment E 3: Fourier Matthijs 10 

 

Attachment E 4: Fourier Matthijs 60 
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Attachment E 5: Fourier Steven 10 

 

Attachment E 6: Fourier Steven 60 

  



 
 

81 

14.6 Section F: Philosophy and ethics 

Currently, artificial intelligence is mostly portrayed in a bad way in the media. Famous people 

like Elon Musk and Stephen Hawking have quotes that warn about the dangers of AI. Although 

big improvements are made every day, the ethics of AI should not have the priority on what we 

should solve today, even though it should be discussed eventually. Problems we face like 

climate change should be first on the list of worrying about. AI can seem like something scary or 

threatening if someone has little knowledge of it. Instead of fearing the change, taking a look at 

the positive side will show that AI can help a great deal with the evolution as humans. 

At the moment, great minds are working together in order to achieve great heights with 

artificial intelligence such as the recognition of diseases, assistance of elderly and the prediction 

of proteins. If used for a good cause, we believe AI can help humanity go a far way. 

The capabilities of AI are increasing every year. artificial intelligence is beating humanity in an 

increasing number of fields, especially in computational and analytical ones. The world 

champions in games such as GO and chess have been beaten by AI, and most stock trading is 

done by computer software. However, this does not mean that the AI is ’smarter’ than humans. 

A computer can beat a human in chess, but it does not have the faintest clue on how to play 

checkers. These types of AI excel in one thing, and one thing only. They are called ‘Artificial 

Narrow Intelligence’, abbreviated as ANI55. Currently all the ’intelligent’ systems we have 

created are ANI, programs that excel at one thing, but nothing else. 

The next step in AI classification has not been reached by humanity yet. This is ‘Artificial 

General Intelligence’, or AGI. An AGI is a program that is as smart as a human being in every 

field humanity can think of. Theoretical physics, creativity, philosophy, psychology, voice 

recognition and even computer programming. Everything a human is capable of, an AGI is 

capable of as well. After AGI has been reached it is but a short step to the next, and final, type 

of AI, called Artificial Super Intelligence (ASI). 

An AGI can do anything a human do, but there is a key difference. Humans are limited by 

evolution, improvement to the human race can take thousands of years. Theoretically, AI is not 

limited by this, it could re-program itself at incredible speeds with the same skill as the best 

programmers in the world.  

Right after AGI has been achieved the system would be able to re-program itself faster and 

better than any human ever could, becoming an ASI. This ASI would be even smarter than the 

AGI and be able to re-program itself even better. This cycle continues until an exponential 

amount of growth would occur, where the ASI outclasses humanity by such astronomical 

amounts we would not have any control over it. This point is called the technological 

                                                      
55 Jajal, T. (2018, May 30). Distinguishing between Narrow AI, General AI and Super AI. Retrieved on January 18, 
2019, from https://medium.com/@tjajal/distinguishing-between-narrow-ai-general-ai-and-super-ai-a4bc44172e22 
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singularity56. What would happen after such a singularity occurs is not clear, as the human mind 

could not even comprehend what would go on in the ’mind’ of such a super intelligent being. It 

would be like an ant trying to understand calculus without even having the slightest grasp of 

addition and subtraction. 

No reason for despair yet though. Although we are progressing rapidly, this tiny fracture of 

experience that we have gotten has resulted in us thinking that we are still relatively far from 

such a singularity. We hope that this paper has not only helped understanding the basics of 

Neural Networks but also to understand why we think there is no reason for despair yet.  

                                                      
56 Reedy, C. (2017, October 16). Kurzweil Claims That the Singularity Will Happen by 2045. Retrieved on January 18, 
2019, from https://futurism.com/kurzweil-claims-that-the-singularity-will-happen-by-2045/ 
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